
Bits vs. Things/Bob Frankston 1 12/4/2019 13:40 

Bits vs. Things 

I’m writing this for CE Magazine rather than Computer 

Magazine because I don’t see programming and software 

as something apart from the larger world but as the lan-

guage, we use to articulate our understanding. Software 

has transformed consumer electronics from simply choos-

ing what is available to having the ability to create and 

share one’s solutions. 

In 1997 I teleported a toy truck 3000 miles from New 

York City to Seattle. My mother handed me the toy and 

asked me to send it to her grandson (my nephew) in Seattle. 

I said that it would be there within an hour. And it was – at 

one instant the truck was in New York and then it was in 

Seattle. 

 

Just like the transporter, the fictional teleportation machine 

from Star Trek, except that it’s for real. The writers of Star 

Trek could just handwave the technical details. I had to 

engineer a solution that actually worked. That constraint 

was empowering. I realized I didn’t have to send the atoms. 

I just needed to send the instructions for how to (re)create 

the truck at the destination. 

The writers of the TV show didn’t have to think about the 

distinction between sending a physical object and sending 

information about the object. They could mix the metaphor 

of radio transmissions of information with the metaphor of 

physical movement. 

Moving from theory to practice, how does one transmit a 

physical object? The answer, when presented with the task, 

is fairly trivial.  You send the instructions for assembly of 

the object at the endpoint. Nothing profound there. No 

more profound than Copernicus shifting a reference point 

for the solar system by 1.5×1014 meters. He changed noth-

ing yet he invented the idea of a solar system and dis-

placed people from the center of the universe. 

I didn’t actually send the instructions for building a truck 

out of parts but simply returned the toy truck to the nearest 

store and sent my brother the SKU (stocking unit number) 

of the toy so he could buy it from the local store. That is a 

valid instruction. If I sent step by setup instructions for 

building a toy truck out of Lego blocks, I would still be 

sending out a series of SKUs plus the instructions for how 

to assemble them into the specific whole that is the truck. I 

just chose a SKU that made the assembly trivial. 

This is the power of learning by doing and in solving real 

problems rather than accepting the constraints of an artifi-

cial problem. If I had been told to implement Star Trek 

teleportation as specified, I would have failed. 

This is like the challenge of debugging programs. We can 

prove that there are no general solutions, yet we still debug 

programs in the real world. 

 This kind of artificiality has bedeviled telecommunica-

tions policy and systems design for the last century. A 

communications channel is a mathematical construct that 

doesn’t have a counterpart in the physical world. The In-

ternet approach is to do more by doing less. Instead of 

providing me with a channel, I just get best efforts packet 

delivery and then discover what I can do with that oppor-

tunity using software. I’m also aware that I’m not sending 

content as much as references to content. The difference 

can be subtle but, in the age of software, understanding the 

http://frankston.com/public
https://doi.org/10.1109/MCE.2019.2923931


Bits vs. Things/Bob Frankston 2 12/4/2019 13:40 

interplay between names and things gives us the ability to 

reinvent the world. 

It allows me to transport (the information about) the truck 

and, in effect, send the truck through a thin wire. 

We ignore the distinction in everyday language which cre-

ates a path-dependent understanding. If we ask the theoret-

ic question about channels, we accept the constraints as if 

they were real. It doesn’t help that the very words we use 

make this easy – “communicate”, “information”, and 

“channel” all sound like their day-to-day counterparts but 

are very different. In fact, we go so far as to create chan-

nels out of nothing when we allocate radio frequencies to 

serve as dedicated channels. 

In engineering it is useful to build up abstractions so we 

don’t have to solve all problems from first principles, but 

we mustn’t forget they are just constructs. These con-

structs are understood in an implicit context. 

The idea of sending a part number is not new. A hundred 

years ago you could’ve called me on the phone (or, more 

likely, sent a telegram) and told me that you admired the 

shirt I was wearing and then ask me to go to the store (say, 

a local Sears) and buy one just like it and send it to you. I 

may have told you that you could go to the Sears near you 

and buy the same shirt. Or that you could order it from 

Sears, and they would ship it from the nearest warehouse. 

Yet, for communications engineers, if I pose the question a 

little differently and ask how many bits it would take to 

ship you a copy of an encyclopedia that takes a terabyte on 

disk you may accept that I could compress it to a zip file 

so that I only had to ship a few gigabytes. When I say I can 

compress it to a few bytes (less than a 64-bit word) I am 

told that, according to information theory, it’s impossible. 

Using an ISBN number as my dictionary is not cheating 

any more than using English words. Yet communications 

engineers use this very technique when sending data – a 

shared clock is an out-of-band signal. 

In the same way, stored programmed computing has 

evolved from high speed calculating to something far more 

nuanced. Copernicus’s heliocentric solar system gave the 

impetus to physics by showing a regularity that Newton 

could build on. 

There is value in thinking about names of things vs. the 

thing itself. Naming is not a simple concept. The distinc-

tions we make between identity and addresses are opera-

tional and not fixed. One big idea is our ability to manipu-

lating naming or binding. 

Which brings us to the idea that the truck in New York and 

the truck in Seattle were the very same truck. You may not 

have thought about it that way because it wasn’t a big is-

sue at the point because you know my nephew wouldn’t 

care. But it is a very big deal since so much policy and 

philosophy is based on a sharp distinction between direct 

and indirect actions. With software there isn’t such a sharp 

distinction and we’ve operationalized abstractions. 

This gets confusing when we use existing vocabulary in 

this new context. That’s the way language works – econo-

my of mechanism. Once we did depend on the telecom-

munications industry in giving us the (only) way to in-

stantly communicate over a distance. Hence, we call it tel-

ecommunications. Now communications as technology 

and communications as speech are no longer aligned. Yet, 

in the US, we’re left with a Federal Communications 

Commission that is betwixt and between. Other countries 

have their counterparts such as Ofcom in the UK. 

I’ve written about how we discovered “best efforts” by 

programming around an unreliable middle using tech-

niques such as retransmitting packets from the end points. 

We also discovered the power of better never than late and 

the idea that we can fill in gaps rather than assuming the 

missing value is zero. 

When we transmit a SKU number it has no meaning to the 

facilities between the two end points. That has another 

deep philosophical concept – the (meaning of the) data not 

existing in the middle. The meaning only comes from con-

text at the endpoints. This is even more interesting when 

we think of sending the toy truck across the country. It 

doesn’t exist in the between. And the same process works 

for a full-scale truck too! 

This concept of binding is central to programming. In 1958 

John McCarthy came up with the idea of a programming 

language based on Lambda Calculus -- LISP. Unlike 

Fortran, which was used to perform calculations, LISP was 

used to operate on data schemas rather than the data itself. 

This is why it was an early favorite for AI. Schematic 

evaluation is also why relational databases are so powerful. 

And those concepts are now central to JavaScript. 

Together these concepts are part of what I call a new liter-

acy. It gives us a vocabulary for thinking about how sys-

tems work and gives us a way to understand how meaning 

derives from context rather than being intrinsic. 

Alas, such an understanding is the basis for a surveillance 

economy that is not about privacy in the traditional way of 

protecting individual pieces of data but rather about how 

we deal with the data vapor all around us that doesn’t af-

fect us so much as individuals as much as part of popula-

tions. These issues are at the forefront of social policy as 

well as technical policy, yet we barely grasp these con-

cepts and do not have a vocabulary for talking or even 

thinking about them. 

http://frankston.com/public


Bits vs. Things/Bob Frankston 3 12/4/2019 13:40 

These are interesting topics in the abstract, but I see them 

as coming to the fore in a consumer electronics industry 

that is increasingly defined by software rather than hard-

ware. Or, should I say, the consumer technology industry 

as the focus shifts from the electrons and atoms to the new 

literacy and paradigms. 

What will happen as true digital natives, the ones who cas-

ually write software not just consume content, come into 

their own? They won’t be simply consumers of technology 

nor content creators; they will be citizens of a new reality. 

http://frankston.com/public

