

[Title]/Bob Frankston 1 12/29/2016 10:38

Site Insites

Online Version
The final version formatted for the magazine on the IEEE

site is available here.

Refreshing
Periodically I need to refresh my website. Once again I’m

rebuilding the site from the ground up or at least taking a

fresh look at the software behind the site. In my April 2016

column I wrote about building a simple IoT device and

shared what I'd learned in the process.

As part of the process I implemented a simple web server

from scratch with both server side and client side code.

Without the need to do a large-scale commercial website I

was free to take a very simple approach using node. Start-

ing from scratch can be very refreshing. It turned out that

with today’s tools it was far easier to start with a blank

slate than to use heavy duty environments. Apache and IIS

are valuable but they also come with attitudes and assump-

tions.

This refresh is my fourth iteration of my website. The

story starts back in the 90's ...

My First Site
In 1994 Dan Bricklin and I recorded this demonstration of

the relatively new

World Wide Web.

Fortunately, New-

ton Massachusetts

was one of the

first communities

to get cable mo-

dems. I already

owned the domain

name Frank-

ston.com so I just setup a server on my desktop computer.

The page is still there with my face preserved as if in am-

ber and many of the links still work! The fact that I’m sur-

prised that links still work is a topic in its own right – why

do we use technologies like the DNS (Domain Name Sys-

tem) which make links expire by default?

In July of 1998, inspired by others, I started to write posts.

It was very simple and I wasn’t familiar with advanced

concepts like proofreading. I did a number of other pro-

jects which gave me a chance to do more than just post

text. One of the more ambitious was a site for my son’s el-

ementary school.

Doing these projects gave me an opportunity to experiment

with technique before they become the norm as when I

found I could use JavaScript to generate HTML on the fly

and dynamically download XML data. That approach be-

come formalized as XMLHTTP.

Fortunately, even desktop operating systems had full capa-

bility web servers (IIS on Windows and Apache on Linux).

And they, still do which is a reminder of the peer nature of

the Internet.

The standard server-side scripting was (and still is) to in-

termix code with markup using <% %> or a similar nota-

tion.

The standard design assumes that a URL points to a file

using the standard file system naming convention includ-

ing the suffix such as .HTML or .ASP (for a scripted file).

By default, a website is on port 80 which makes it awk-

ward to have independent servers on a machine. multiple

sites on a given machine would normally be managed by

the web server.

http://frankston.com/public
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7786837
http://rmf.vc/IEEEBlinky
http://nodejs.org/
http://rmf.vc/WWWDemo
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7786837
http://www.bricklin.com/www1994.htm

[Title]/Bob Frankston 2 12/29/2016 10:38

Leaving Home
In about 1999 to assure availability I moved my site to In-

terland (now Web.com). The remote site was a clone of

my desktop. It allowed me to continue to use my desktop

to develop my site and then deploy it by simply copying

files to the remote site. Microsoft’s FrontPage and, later,

Expression Web, made this easy.

In 2006 I wanted to modernize my approach and separate

code from presentation. I wrote my own tools. I wrote a

tool that converted Word files to simplified HTML. On the

server side, I took advantage of the then new capabilities

in IIS to do a server side program to read those files and

present them at HTML.

One of the challenges I face in maintaining compatibility

is that there are URLs pointing to my site that reside on

other sites. I want them to continue to work. That meant

maintaining the .asp files but changing them to redirect to

the new names.

(As an aside people forget that the problem of the

passive observers who are invisible. We see this

again in the excitement over “whitespace” in spec-

trum allocation. The flaw in that approach is that

we don’t know which listeners will get confused

by the new uses of that portion of the spectrum).

I started to use http://rmf.vc for my own keyword system

similar to http://bit.ly but under my own control. I imple-

mented the keywords by redirecting the references to a

“name=” parameter on the URL.

The new sophistication meant I had less control and found

myself trying to work around the standard practices. I also

want to update the look of my site. This led me to, once

again, reinvent my site.

While it would be nice to take advantage of the features of

sites like WordPress I would lose the ability of innovating

on the server and would have to work within the Word-

Press conventions.

One point I made ien writing about my “blinky” project

(April 2016 column) is that a web server itself can be

fairly simple. I decided it was easier to write my own

server than to work around favors from others.

The bonus is that I get to learn so much in the process and

am still learning.

Understanding the Web Protocols
For background it helps to understand the web protocols.

They are relatively simple.

The URL specifies which protocol to use (as in http) and

then supplies parameters – the query string. You can go to

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

for more detail.

http
http (or https) is just one of the possible protocols or

schemes used. This specification of the scheme is a key

part of the success of the web. If we only wanted to fetch

files from a server, we could use ftp. http makes the infor-

mation in the exchange explicit including having the server

specify the type of processing (such as text/html)

In a sense what http does is add a level of indirection so I

can spoof the earlier protocols. With http I’m still serving

up a file as with ftp but the file can be created on the fly.

The request and response have both a header and a payload

with the header describing the payload.

For an http request the header specifies the type of the

payload (the body). It may be the contents of a form or it

may be XML or JSON content. This is why it was easy to

implement and JSON requests and APIs using standard

protocols.

http also allows one to provide the name of the service. A

single listener at an IP address can service multiple site

names. This allows multiple IIS and Apache to host multi-

ple sites at given IP address sharing a single port.

This is also why we’ve tolerated legacies of history such as

the idea of having multiple applications sharing a single

http://frankston.com/public
http://rmf.vc/
http://bit.ly/
http://rmf.vc/IEEEBlinky
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

[Title]/Bob Frankston 3 12/29/2016 10:38

port 80. This made a lot of sense in the days of main-

frames. A single mail server on a timesharing system

would listen on port 25 and receive the mail on behalf all

users.

A far better approach would be to associate names with

software applications as end points rather than devices

(computers). But that’s a topic in its own right.

The protocol (http, ftp…) is implemented in the client on

the user’s computer. A browser is one possible client but

not the only one. In Windows you can type “start

http://frankston.com” which launches the

browser or start “mailto:IEEE1701@bob.ma”

which launches your mail program. Windows has em-

braced this notation for other purposes and, coincidently, it

is similar to the file system. Linux has similar capabilities.

HTML and web pages.
As with JavaScript, HTML has accumulated baggage as it

has evolved. A modern site separates out the elements of

presentation and code:

 HTML (HyperText Markup Language) itself – the

<p>…</p> syntax. Today the main web page

only has text and markup. The code and style are

in separate files.

 CSS (Cascading Style Sheets) are now separated

out into a separate file and putting markup directly

into the HTML is considered bad form. CSS has

its own heritage with a syntax more like JSON

than XML.

 JS (JavaScript) is now typically in its own set of

files with modules providing additional structure.

A Fresh Start for my Site
Platform Droppings
The first step was to choose a platform. I tried Microsoft’s

Azure and Amazon’s web services. Since I am familiar

with the Microsoft tool suite I went with Windows Server

which is a restricted version of what I run on my desktop.

In both hosting sites I got frustrated by the inability to con-

nect to port 80. There were just too many firewall rules in

the path second-guessing everything I do.

These firewall rules and other impediments in the path be-

tween the end points works against the edge-to-edge archi-

tecture of the Internet as I wrote about in my October 2015

column.

I found a simple alternative in DigitalOcean droplets which

are small Ubuntu virtual machines. They start out with

20GB of storage at $5/month which is more than adequate

for my modest site. They are so inexpensive that I got two

of them so one could be my beta site and the other a produc-

tion site. This is important since running on Ubuntu isn’t

exactly the same as running on the droplets. I still do most

debugging on my desktop which is now my alpha test site.

The interface is my old friend the command line. I quickly

got up to speed with what I needed for my applications:

 The latest version of node.js (6)

 PM2 which is a useful program that keeps my app

running across failures and reboots

 Emacs I would have a local editor

 Dropbox for deployment

 Python2 for the tools

 LetsEncrypt for certificates.

Deployment is very simple. I created an additional Drop-

box account and shared my “site” directory with it. Any

changes I make automatically appear on the droplet sites

and, thanks to PM2, if I change the beta or production Ja-

vaScript files the server program automatically restarts.

For safety I keep a separate file tree on my home machine

for experimenting and also separate file trees for beta and

production versions.

The sharing works both ways. I can write to a log file on

my droplet and simply read it on my desktop. Having a

separate Dropbox account provides me with a degree of

isolation and safety.

Given how simple the droplets are I treat them as disposa-

ble if I need to experiment or just need another clean build.

Choosing a Language and Environment
I’m used to using C# which has a mature library and ad-

vanced capabilities. It now even runs on Ubuntu. I may go

back to using C# but for now I’m using JavaScript.

Actually I’m using TypeScript which is Microsoft’s open

source implementation of superset of TypeScript that in-

cludes type annotation and constructs that make it easier to

write well-formed JavaScript.

TypeScript allows me to use Visual Studio on my desktop

much like I use it for C#. The static type checking and

hinting have been great boons in productivity and facilitate

experimentation.

I use Node as my production environment. The NPM

(Node Package Manager) gives me access to many thou-

sands of packages though the primary capabilities for han-

dling http are already baked into Node,

http://frankston.com/public
http://frankston.com/
mailto:IEEE1701@bob.ma
http://rmf.vc/ieeerelationships
https://letsencrypt.org/

[Title]/Bob Frankston 4 12/29/2016 10:38

While there are some features of C# I miss, I enjoy the

freedom of JavaScript and its features. For example, using

template strings. I can write:

 html`<h1>${title}</h1>`

which inserts the value of the title variable in the string.

The tag HTML is the name of a procedure which is given

the values to insert. It can assure that even if title contains

characters like “<” it will be properly quoted. It provides a

clean way of generating HTML.

The Site
The site itself is still a work-in-progress. The first step was

to match the old site and achieve essentially the same look.

2006 vintage site was a mixture of clean code using CSS

and whatever happened to work.

One of the motivations for redoing the site is the ability to

use the URL as a resource rather than just a path into the

file system. I no longer need to convert a keyword into a

name=. In fact, I can do the reverse and normalize URLs

to the format of http://rmf.vc/keyword even if the original

link had a different syntax.

I now have the task of taking URLs that happened to work

and keeping them working. Thus http://frankston.com/pub-

lic/essays/leapseconds.asp used to go to an asp file that

would redirect to the proper file. I now process such URLs

and check to see if the file name (leapseconds) matches an

existing keyword. The user will then see

http://rmf.vc/LeapSeconds as the normalized form. This

should also help with search engines.

One of the challenges has been taking what worked im-

plicitly and making it work explicitly. This means trying to

assure that the existing URLs work.

Conversely I’m tightening up the rules when I can. I’m

trying to assure that keywords only work for http://rmf.vc

and redirect most of my auxiliary sites to http://Frank-

ston.com. I also support subsites: http://EleanorElkin.com

for my wife’s art and http://Connectivty.xyz for signing up

for when (and if) I put together a site focused on connec-

tivity. Each presented its own challenges and techniques.

Given how lightweight processes are, such sites can be im-

plemented independently using separate droplets or using

an http forwarder.

I use LetsEcrypt for certificates and need to complete that

as well as assuring automatic renewal. A certificate

doesn’t guarantee that you can trust the site. It just says

that the site you reached corresponds to the name on the

certificate.

If the traffic becomes too heavy I can easily spin up addi-

tional droplets and can do the same for the subsites if I

want very different behaviors.

Beyond Websites
The ability to have scalable services on the net has

spawned industries around other approaches. Rather than

virtual machines these often use containers which are re-

ally just timesharing processes. Both VMs and processes

go back to the 1960’s.

Many of the “sites” aren’t really sites at all but provide

services which may be used as middleware by other sites

or as services consumed by apps via JSON APIs. The apps

may be traditional applications or, increasingly, HTML5

applications.

While these trends have lots of advantages there is a dan-

ger in complexity building up as sites depend on each

other and on libraries such as JQuery. This is another rea-

son I’ve embraced TypeScript with HTML5 – it’s easy to

develop apps with minimal dependence on large libraries.

In creating a simple site, I didn’t need to deal with com-

plex issues of scalability, authentication and many other is-

sues. And that is part of the point. By keeping things sim-

ple I am back in control. Periodically returning to simplic-

ity is very healthy.

To be clear, this isn’t simplicity in the sense of simple but

rather appropriate architectures. It’s a chance to refactor

applications and discover new effective architecture mov-

ing forward and making the implicit choices of the past ex-

plicit.

Software
This column is bits vs. electrons. In a sense writing about

the website is akin to writing about a hardware project.

Software + connectivity gives me a chance to not only

tinker but to share that tinkering with the world in a prag-

matic way. If you do visit http://frankston.com it may look

very different how it looks at the time I wrote this column.

It is a work-in-progress and also a chance to experiment

with new approaches.

http://frankston.com/public
http://rmf.vc/keyword
http://frankston.com/public/essays/leapseconds.asp
http://frankston.com/public/essays/leapseconds.asp
http://rmf.vc/LeapSeconds
http://rmf.vc/
http://frankston.com/
http://frankston.com/
http://eleanorelkin.com/
http://connectivty.xyz/
https://letsencrypt.org/
http://frankston.com/

[Title]/Bob Frankston 5 12/29/2016 10:38

Postscript
After I completed this project I revisited the “Blinky” pro-

ject I wrote about in my April 2016 column

(http://rmf.vc/IEEEBlinky). I was able to quickly port it to

the Raspberry pi Linux system while retaining my ability

to do remote debugging. It’s a reminder that the benefits of

the project in what I learn as much, if not, more than nar-

row goals of the project.

http://frankston.com/public
http://rmf.vc/IEEEBlinky
http://Frankston.com

