
Implementing VisiCalc/Bob Frankston 1 10/12/2015 20:07

Implementing VisiCalc

Preface

I'm writing this in preparation for the Computer His-

tory Museum's The Origins and Impact of VisiCalc

panel on April 8th 2003. This is basically a draft and I

hope to do some more editing as time permits and you

should expect many typos until then. I'm also going to

continue to edit and change this as I remember details.

This version incorporates corrections and suggestions

from readers. Normally I would just post the update

but for the sake of purity I'm going to leave V1 avail-

able, at least for now and will continue to repost this

as I make corrections and improvements. For those

interested in the changes (if I remember them aside

from typos and miscalculating 3+5*4)

 Added a reference for RPN

 Added screen shots from the reference card at

http://www.bricklin.com/history.

 Added comments about memory and third

party enhancements.

 Added a note from John Doty 2003-05-23

I will post incremental updates and try to catch up

with a summary of what has changed in this section.

Introduction

This is my long-delayed attempt at writing about my

experience in writing VisiCalc and the many design

decisions that we made along the way. But even after

nearly a quarter century I remember many of the de-

tails though maybe my memories have evolved. The

process of writing down this experience is already

evoking many memories and, unless proven otherwise,

I'll assume that they are memories of real events but

others may view it differently and I will try to correct

the more creative aspects of my memory.

Even simple decisions were only simple in context.

They were all intertwined and I will try to reduce the

confusion by separating aspects of implementation,

design and business.

For more details on the history of VisiCalc and even a

version that still runs on the IBM PC, see Dan Brick-

lin's VisiCalc History pages.

Getting Started

I started to program VisiCalc in November 1978 and

we shipped the first production copy in October 1979.

The idea itself had been percolating in Dan's head

long before and we had discussed various approaches

over the year before I started to program it. At one

point we considered implementing the program on the

DEC PDT (Programmable Data Terminal) which was

a small computer that fit inside a VT (Video Terminal)

-100 which was a character-based computer terminal.

It would have been expensive and aimed at high level

meetings. We were lucky that we didn't make a deal

with DEC.

As Dan described the product I envisioned a group of

people sitting around a table with small devices point-

ing at a screen. Each had the ability to draw on the

shared screen with graphics and formulas. The formu-

las would be recalculated as needed. This seemed rea-

sonable give the technology of the day such as the

Spatial Data Management System developed at MIT

Architecture Machine Group, the predecessor of the

MIT Media Lab.

The big breakthrough was when Dan put together a

simple version in Integer Basic on the Apple][. It had

a grid of rows and columns. While the use of a char-

acter grid with rows and columns seems uninteresting

compared with a shared graphics screen it was the key

to making the product usable because it gave people a

framework to work with. It wasn't necessary to de-

scribe the equations since they were easily and im-

plicitly defined by their position on the grid. We also

dispensed with a pointing device since game paddle

for the machine wasn't up to the task.

The Apple's screen was 40 columns and 25 rows. This

was a small area and it was easy to move around us-

ing the arrow keys on the keyboard. Since everything

could be done using the keyboard, proficient users

would work very quickly.

http://frankston.com/public
http://video.google.com/videoplay?docid=-4354611782446550122
http://rmf.vc/ImplementingVisiCalcV1
http://www.bricklin.com/history
http://www.bricklin.com/visicalc.htm
http://www.dec.com/

Implementing VisiCalc/Bob Frankston 2 10/12/2015 20:07

Dan was attending Harvard Business School so asked

me to help him by writing the program. I had already

been programming on the 6502 and also did a project

to convert a program from the TRS-80 to the Ap-

ple][simply to become proficient. I made a listing of

the TRS-80 program by using my SX-70 Polaroid

camera to take a picture of each page and then

worked with this listing as I rewrote the code for the

Apple.

In November of 1978 I started to prototype VisiCalc.

We eventually shipped that prototype.

Background

By the time we created VisiCalc Dan and I had been

working professional and academically for well over

a decade. I started programming in Junior High

School in 1963 and had been creating online services

professionally since 1966. Those of us working in

online systems in those days would have full respon-

sibility how the program was used, not just the im-

plementation details. While there were corporate pro-

jects that had a whole raft of people breaking the de-

sign and implementation project into small steps,

many of us worked from ideas and then adjusted the

programs as we gained experience. Working with

online systems we deployed the program by simply

giving others access and could quickly evolve the

program as we learned how it was actually used. The

process worked best when we were also users.

I did both commercial software at Interactive Data

and was a student at MIT where I worked on the Mul-

tics project. Multics was a very influential project in

that its goal was to make computing accessible to

nontechnical users. It was also managed as an open

source project within the development group. There

were very few computer projects in those days so any

large project would attract the best people available

yet there was remarkable little reluctance to share

with others and trade code.

We were able to treat the large mainframe computers

as personal computers. We focused on making the

program and the experience rather than the limitations

of the smaller systems. The smaller less expensive

systems were also valuable in that they allowed for

more interaction with the user. The early systems

were run in what was called full-duplex or echo-plex.

When you typed a character on the keyboard of a tele-

type nothing printed. The computer system would

normally send the character you pressed back to the

teletype so you would think that it acted like a type-

writer but that was only an illusion since there was no

intrinsic relationship.

When we started to use screens instead of teletype we

had the freedom to paint the screen in two dimensions.

There were interactive editors for teletypes--today's

VI is a descendent of QED on the SDS-940 which did

just this. You were always editing the previous line.

At MIT Richard Stallman added a redisplay capability

to the Teco editor which allowed others to create sets

of macros. One set was called Emacs (Editors Macros)

become most popular and eventually was treated as

the native editor. Later I implemented a version of

Emacs for use at Software Arts and we traded it to

Prime Computer for a disk drive (they used to be very

expensive). The interactivity of Emacs provided a

good example of the independence of what you did

with the keyboard and what you saw on the screen.

Dan did a commercial word processor, WPS-8 at

DEC that paid careful attention to making the users

feel comfortable with editing on this new device by

making it simple and familiar.

I also worked with a company, ECD that produced a

6502-based computer. It gave me a lot of experience

with the 6502. One of the programmers, John Doty,

created a useful assembly language for the machine

that included macros to eliminate the need to use

jump (or goto) instructions. It ran on Multics and we'd

download the code to the 6502.

In addition to the commercial time sharing experience

and the experience with Multics at MIT and the expe-

rience using the more interactive systems at the AI

Lab, languages like Lisp and +AIU- well there was a

lot of experience. I also founded the Student Infor-

mation Processing Board as a way to make this com-

puting bounty available to others students.

Design Principles

VisiCalc was a product, not a program. Decisions

were made with the product in mind and, to the extent

possible the programming was towards this end. In

practice it was more complicated as we were design-

http://frankston.com/public
http://frankston.com/public/Essays/ImplementingVisicalc.asp#Doty

Implementing VisiCalc/Bob Frankston 3 10/12/2015 20:07

ing against the limitations of the personal computers,

price point and, most important, what the user could

understand.

The goal was to give the user a conceptual model

which was unsurprising -- it was called the principle

of least surprise. We were illusionists synthesizing an

experience. Our model was the spreadsheet -- a sim-

ple paper grid that would be laid out on a table. The

paper grid provided an organizing metaphor for a

working with series of numbers. While the spread-

sheet is organized we also had the back-of-envelope

model which treated any surface as a scratch pad for

working out ideas. Since we were used to working

with powerful computers without worry about the

clock running, we already had the experience of fo-

cusing on the user’s needs rather than the computer’s

needs.

The ability for Dan and I to work as a team was cru-

cial. While he could've written the program, the fact

that he wasn't gave him the freedom to focus on what

the program should do rather than how to do it. I

could appreciate his reasons and would eventually

accept that I had to change code that I had labored

over. We were able to find ways to take advantage of

the limited space available for the program in decid-

ing what features to include or not include.

The original version put the entry area at the bottom

of the screen. By playing with this simple prototype

Dan found that it was better to put the entry area at

the top of the screen and I made the change to the

evolving program.

In addition to prototyping, Dan put together a refer-

ence card for users. If we couldn't figure out how to

explain a feature on the reference card we would

change the program. The original method for copying

formulas was too complicated so we just changed the

design rather than try to explain it.

The Apple][

In 1978 the Apple][was viewed as a game machine.

In fact, it was intended to be a hobbyist game ma-

chine. It had up to 64KB (that's kilo bytes) or 65336 8

bit bytes, or 2^16 compared with today's PC's which

now have 2^29 (512 Megabytes) or 8000 (ok, 8192)

times as much memory. We had no hard drive. Apple

had cornered the market for floppy drives but they

weren't universal so we supported the cassette tape

player as a storage device but, fortunately, few users

even know about it.

There was no way to start or stop the tape drive. We

had to leave gaps in the data on the tape to allow for

processing of each chunk of data before we got the

next one.

Our goal was to fit in a 16KB machine but eventually

we required 32KB. That included a 1KB buffer for

the screen and more memory for the needs of the sys-

tem. We also needed to implement a file system for

the floppies as well as the firmware to support the

drive. Steve Wozniak did a very clever and lean de-

sign and took advantage of the 6502 processor to con-

trol the disk drive as well as for computing. I had to

figure out how he did this by reverse engineering it

since we need to adjust the code for our needs. We

also wanted to avoid being beholden to Apple's li-

cense which gave them the ability to revoke permis-

sion. More on that and the challenges later.

The Apple][was very fast compared with using our

fingers? It was capable of doing maybe a million in-

structions per second but each one was very simple, a

small portion of a single instruction in today's com-

puters. Performance was just almost as important as

space.

There were many many little design decisions. In or-

der to keep things a bit organized I will group them in

categories though many overlapped:

The User Experience

These are the design decisions visible to the user or,

often, the lack of visibility was essential.

The Layout of the Screen

I started programming VisiCalc late November 1978

and by January we were able to demonstrate simple

applications such as the one on the right. By then the

screen was already look-

ing like the production

version (as in the exam-

ple on the left taken from

the first reference card).

http://frankston.com/public
http://www.bricklin.com/history/refcard1.htm

Implementing VisiCalc/Bob Frankston 4 10/12/2015 20:07

We had already arrived at the essential elements of

the layout.

For more details you can look at the annotated screen

on the back of the reference card.

 The invert-

ed L framed the

grid though we

didn't show ac-

tually grid lines

since the screen

was small.

 The status

information was

shown at the

top:

o B8

showed where

the position of

the cursor though you normally just

thought of it as "there".

o The R showed that we were doing row-

order calculation.

o The “!” meant that that two arrow keys

went up and down.

o The amount of memory available was later

added to the status line. We had to be care-

ful to make this number match the number

shown in the manual since users didn't

necessarily distinguish accidental proper-

ties from intrinsic properties so we need to

be careful about even something that

seemed obvious. By the time we shipped it

was increasingly common for machines to

have 48KB of memory which seemed a lot.

o The black area showed formulas as they

were typed. We also showed the typing in

the cell itself.

o The date and time at the bottom showed

the version of the program -- we didn't

have a clock so this wasn't part of the ac-

tual program.

o Each row

had a num-

ber. In this

example it is

left justified

but we made

sure it was

right justi-

fied for the product. We departed from

common notation by numbering the rows

and using letters for the columns. This was

because we had only 63 columns and 255

rows. These numbers were chosen to limit

the number of bits we had to use. There

had to be enough columns for a full year

of production planning plus some extra.

The large number of arrows allowed for it

to be used for multiple sets of data such as

a payroll table.

We originally planned to let people rename the rows

and columns with labels and implemented the feature.

Eventually we decided that we needed to assure stable

reference names so prevented people form moving

into the zeroth row or column. Instead we implement-

ed the ability to split the screen vertically or horizon-

tally.

Remember that the screen was small so we couldn't

fit that much on the screen so a single split was

enough.

The columns were all the same width within a win-

dow. This avoided a level of indirection in reference

the screen. This was a mistake since it would've add-

ed insignificant overhead and the lack of what came

be called variable column with become a competitive

disadvantage.

We made sure that there was a border between num-

bers in each column to assure readability. If the last

column didn't fit then we reformatted for what was

visible rather than clipping it as is typical in today's

windowing systems. Clipping would let the user see

"100" instead of "1000".

We did allow the two windows to have different

widths which gave some flexibility. Movement in the

two windows could be synchronized or they could be

viewed independently. A single cell could be dis-

played in the two windows.

The windows could also show different global for-

mats including the underlying formulas and a simple

character graphics mode that showed the contents of

the cell as the corresponding number of asterisks.

This was a primitive graphic of plotting capability.

http://frankston.com/public
http://www.bricklin.com/history/refcard5.htm
http://www.bricklin.com/history/refcard1.htm
http://www.bricklin.com/history/refcard5.htm

Implementing VisiCalc/Bob Frankston 5 10/12/2015 20:07

We did toy with the idea of using the split screen bit-

map capability of the Apple][to show a live graph at

the bottom of the screen but it would've added too

much code.

The screen would automatically redisplay as values

were changed though the user could turn it off for

manual recalculations when automatic calculations

were confusing. The “!” would recalculate.

Note that it was always "recalculate" -- the first cal-

culation was just an unimportant special case.

Since displaying the spreadsheet was relatively slow

we implemented scrolling as a special case by copy-

ing text from one part of the screen to the other. It

took a few hundred bytes--a major investment in code,

but we felt it was necessary to give a good feel. Thus

we were surprised that 1-2-3 didn't do this smooth

scrolling. Apparently Jon Sachs ran into some prob-

lems and it wasn't worth delaying their shipment for

that feature.

Keyboard Usage and Interacting with Visi-
Calc

Before discussing keyboards, it's worth noting that

back in 1979 people viewed the keyboard as an im-

pediment to using computers. After all, only secretar-

ies could type and the rest of us need to be able to talk

to the computer. Hence the decades spent on trying to

get computers to understand speech. It turns out that

most people could type (at least those who used

spreadsheets) since it was a basic skill necessary for

getting through college. In fact, speech is a very prob-

lematic way to interact with a spreadsheet. In fact, the

spreadsheet itself is used as a communications vehicle

rather than speech.

The Apple][had a simple keyboard that only had up-

per case letters and only two arrow keys. There were

neither interrupts nor a clock. If the user typed a char-

acter before the keyboard input buffer was emptied, it

would be lost.

Electric Pencil was an early word processor for the

Apple][and it would lose characters if the user typed

too fast. To avoid this problem in VisiCalc I polled

the keyboard in the middle of potentially long loop--

keyboard checks were strewn throughout the code.

The characters would be stored in the input buffer.

Since the user would type ahead there was the oppo-

site danger -- overtyping or running ahead. It is nor-

mally to press the arrow key until the cursor was in

the right place. By the time the user reached the cor-

rect cell there would be a lot of extra characters in the

input buffer. To prevent skidding we ignored these

extra characters. Thus we preserved type ahead but

not too much. I doubt if any but the geekiest users

were even aware that there was an issue let alone a

solution. This is the kind of design detail that makes a

program feel good even if you don't know why.

Since there were only two arrow keys we used the

space bar to toggle between vertical and horizontal

motion and showed the current mode with the -- or !

in the upper right hand corner of the screen. The use

of the space bar in conjunction with the arrow keys

quickly became internalized to the point that users

may not have noticed they were toggling the arrows.

Since I've mentioned the arrow keys I'll get a little

ahead to note that the arrow keys worked very differ-

ently when entering a formula or label. If you pressed

the arrow key when you needed to point to a cell you

see the position in line with the formula and as soon

as you typed the next character, such as a +-, the cell

would be committed and you could continue to edit

the formula. But if you were in an operator position

and pressed the arrow, it would enter the formula into

the cell and move the focus to the new cell. Again,

few users were probably aware that these were very

different function because the right thing "just hap-

pened" at the right place.

This was part of the larger goal of giving the user the

illusion of infinite choice and freedom at very point

even though only a very small number of choices

were allowed. In practice only a few choices made

sense in that context. Thus in the context of pointing

http://frankston.com/public

Implementing VisiCalc/Bob Frankston 6 10/12/2015 20:07

to a cell, the arrows naturally pointed rather than ter-

minated the formula.

We used the same principle to avoid error messages.

One motivation was very simple -- error messages

took up a lot of space. Instead we showed the formula

as it was interpreted. If what you typed didn't make

sense, it just didn't do the wrong thing.

In order to keep this illusion, we had to distinguish

between cell names (A1) and functions such as SUM.

We used the "@" as a prefix for functions. That

seemed acceptable and apparently users didn't have a

problem with it.

A1 wasn’t really meant to be a name as much as short

hand for that cell. This is why we didn’t use a grid

notation like R1C1.

This was also one reason we didn't allow people to

give the cells themselves names. The bigger reason

was that it wasn't necessary and the most proficient

users, those who would most value such a feature,

seemed to be very well served without them. But we

did consider allowing the use of labels instead of cell

names but, given the limits of the Apple][, it never

became an issue.

We also need to distinguish formulas from labels and

for that we required a formula start with a number or

an operator such as +- or the special @. One could

use a " to force interpretation as a lab

There were a small number of commands in VisiCalc

and we used the / as the "command key". Remember

that there were no function keys. The legacy of the /

lasted long after VisiCalc and people used to expect /

to be the command key on the IBM PC even for word

processors. I got complaints when I implemented Lo-

tus express and required a function key for commands.

Today the F10 has become standard for that role.

The / itself was chosen because it seemed obvious to

me and was otherwise available. But it was also a

good choice for Dan whose fingers just happened to

be a little crooked and were predisposed to reach that

key.

The commands themselves were meant to mnemonic

but we only showed the letters since the full names

would've been part of the unimplemented help system.

The goal was to have an interactive help system that

allowed you to see the full names of commands and

the keyboard options at any point but we estimated it

would have taken 2000 bytes to implemented an in-

teractive help system and that was an unaffordable

luxury.

Overall though VisiCalc was designed for the casual

user the proficient user was well-rewarded by having

an interface which didn't require one to move one's

hands off the keyboard or even look at the screen to

see where a mouse pointer wound up. The arrows

were reliable ways to move one's position (well, as

long as one didn't scroll very far).

The Apple][had a reset key and in the first versions

there was no way to prevent the user from accidental-

ly pressing reset and losing all the work. This was

simply unacceptable for a production product so we

including a short command sequence that could be

typed into the Apple][monitor to continue VisiCalc.

Since we didn't know where VisiCalc interrupted we

couldn't assume it was safe to continue and only al-

lowed the user to save the spreadsheet at that point.

Files and I/O

The Apple][handled IO view add-in boards. If you

wanted to print to a printer in slot 6 you would say

PR#6. if that slot happened to contain a disk drive that

same operation, however, would boot from the drive.

In order to avoid such problems and do the right thing

for each device VisiCalc had a table of signature

bytes for each board so that we could avoid doing

something like rebooting by mistake. We derived the

bytes by examining the boards and, in effect, doing

our own plug and play. Thus you could print and

VisiCalc would find the printer automatically.

Since we didn't want to be beholden to Apple, I had to

reverse engineer the low level I/O operations for the

disk drives and implement a compatible file system.

The first beta copies had a bug -- I didn't reserve the

bitmap for the file system so after a few files the file

system would get corrupted. Those people who were

careful and wrote their files onto two floppies were

not spared -- both would get corrupted at the same

time.

Since we were handling the low level I/O operations

we could also implement a scheme to discourage

http://frankston.com/public

Implementing VisiCalc/Bob Frankston 7 10/12/2015 20:07

copying the floppy. I also added an extra touch by

having VisiCalc write over itself after booting on the

assumption that a user would test the copy and, unlike

the product disk, it wouldn't be protected. Unfortu-

nately, the write protect tab was not reliable on those

drives so we would also overwrite the original copy.

The copy protection scheme did make the normal

Apple][disk copy program fail. Later this expertise

allowed us to ship a single disk that could handle the

original floppies with 13 sectors per track and those

with 16. It would even remember which way it booted

and then format new disks with the same number of

sectors.

Eventually the copy protection become too much of

an impediment and we dropped it.

As I mentioned we also supported cassette drives in

the initial version. When we saved the spreadsheet we

made sure the first operation allocated the entire sheet

since that could be a long operation and then read it

back from the lower right back. This technique also

sped up loading from disk.

We saved the spreadsheet in a format that allowed us

to use the keyboard input processor to read the file.

There were undocumented commands that allowed us

to set the initial value of a cell and control the loading.

They would also work from the keyboard.

Calculations and Formulas

At its heart, VisiCalc is about numbers. One of the

early decisions we made was to use decimal arithme-

tic so that the errors would be the same one that an

accountant would see using a decimal calculator. In

retrospect this was a bad decision because people turn

out to not care and it made calculations much slower

than they would have been in binary.

We did want to have enough precision to handle large

numbers for both scientific calculations and in the

unrealistic case it would be used to calculate the Unit-

ed States budget. Of course, as it turned out, that was

one of the real applications.

Since the formulas did depend on each other the order

of (re)calculation made a difference. The first idea

was to follow the dependency chains but this would

have involved keeping pointers and that would take

up memory. We realized that normal spreadsheets

were simple and could be calculated in either row or

column order and errors would usually become obvi-

ous right away. Later spreadsheets touted "natural or-

der" as a major feature but for the Apple][I think we

made the right tradeoff.

The functions or, as they were called, the @functions

each had a story. Some, like @sum seem simple

enough but we did have to deal with ranges.

@average skipped over empty cells and @count

could be used to find the count of nonempty cells.

For @npv (net present value) we decided on a formu-

la which was different from that used in COBOL (a

programming language). The COBOL committee was

later asked to be compatible with VisiCalc though I

don't think they made the change.

One of the early applications for VisiCalc was my

1979 tax form. I created @lookup for that purpose.

The transcendental functions like @sin were going to

be a problem so we decided to omit them in the initial

version but, unfortunately, in this review of VisiCalc,

Carl Helmers praised that aspect of VisiCalc and we

felt obliged to implement them. This was a real pain

because I had to find books on such functions and

how to compute them for the appropriate precision

and range of values and all this had to be done in very

little space. It took a week or two but eventually we

did them. At this point Dan was available and joined

in the programming.

While I could usually cobble together adequate rou-

tines to do what was needed I found myself doing a

bad job in converting numbers to external representa-

tion. Late in coding I found some cases that didn't

convert properly and produced results such as "+-0". I

patched around it by looking for those cases in the

screen buffer itself and fixing it. It worked well

enough so that I could move on to other problems.

One design decision was to not do precedence in the for-

mulas. If you typed 3+5*4 you got 32 instead of 23. We

reasoned simple calculator users expected each operation

to take place as it was typed. In hindsight this was a mis-

take―people expect precedence and the sequential opera-

tors on a simple calculator were not viewed in terms of the

whole calculation as written. Internally I had been self-

taught on how to do parsing of formulas (I keep trying to

http://frankston.com/public

Implementing VisiCalc/Bob Frankston 8 10/12/2015 20:07

not type equation since mathematicians talk about equa-

tions since they are normally balancing them). In 1966 I

was working on FFL (First Financial Language), a story in

its own right but for another essay, and had a vague sense

of how to do it but with some advice I figured out how to

do a simple stack-based implementation. For VisiCalc I

tried to do a very compact version of this and it would

have been just as easy to implement precedence.

For those interested in the details of handling formulas ...

Internally the parser works by pushing operands and oper-

ands on the stack and executing each operation when it

was forced by a lower precedence operation. Thus for

3+4*5+2 you push the 3 on the operand stack and the + on

the operator stack (at least, that's what I think―unless I

actually run the code I presume anything I write is buggy),

then push the 4 and then the * and the 5. So we have 3,4,5

and +,*. The + causes the previous * and + to execute,

producing 3,20 and +. Next we do the first plus to get 23

on the stack, push the 2 and then the end of the equation

causes remaining operations to be performed. This is left

to right execution with precedence. All we do to not do

precedence is to treat the * and the + as being the same

priority. ()'s are used to force ordering.

I used two stacks in this example, if we didn't have to deal

with reordering, I could write the formula as 3,4,5,*,+,2,+.

This stack notation is known as reverse polish notation or

RPN (Invented by Jon Lukasiewicz). HP calculators han-

dled this natively and it was very natural once you got

used to it. In fact, many of us liked it better than the stand-

ard notation since one didn't have to keep the entire con-

text in mind and there is no need for ()'s. But it wasn't a

sufficient improvement to get over the unfamiliarity.

Programming Decisions

This section is for geeks so I won't try to translate all

of the terms.

OK, so what's going on behind the curtain? Faced

with a 16KB target, that included enough space to

actually hold a useful spreadsheet, I went into severe

design mode. I normally don't worry about the size of

my code since it takes a lot of work and normally

doesn't make a difference and there is a real risk of

getting locked into premature design decisions.

For VisiCalc I had no choice. It was made more diffi-

cult by not knowing much about the program since no

one had used it yet. Dan's ability to work on the pro-

totype gave us some clues about where we were

headed. I started to mock up the program by writing

the initializations code, SSINIT (SpreadSheet Init) so

that we had a framework for displaying the sheet.

Now all I had to do was fill in the stuff underneath.

One guiding principle was to always have functioning

code. It was the scaffolding and all I needed to do was

flesh it out. Or not. Since the program held together

omitting a feature was a choice and it gave us flexibil-

ity.

I was lucky in that basic architecture was viable. Well,

after programming for 15 years I did have some idea

of how to write such a program so it was more than

luck. In fact, I did have to do some reworking as we

went along but I also left stubs such as the reality of

row and column 0 for the labels even though we did-

n't allow users to move there. It allowed them to be

handled normally by most of the code.

One of the earliest issues was representation -- how

do I represent the formulas in memory (and later, on

disk). I was still spending a little time at Interactive

Data at that point and designing the layout was the

kind of productive doodling I needed to stay awake in

a training class.

The basic approach was to allocate memory into fixed

chunks so that we wouldn't have a problem with the

kind of breakage that occurs with irregular allocation.

Deallocating a cell freed up 100% of its storage. Thus

a given spreadsheet would take up the same amount

of space no matter how it was created. I presumed

that the spreadsheet would normally be compact and

in the upper left (low number rows and cells) so used

a vector of rows vectors. The chunks were also called

cells so I had to be careful about terminology to avoid

confusion. Internally the term "cell" always meant

storage cell. These cells were allocated from one di-

rection and the vectors from the other. When they col-

lided the program reorganized the storage. It had to

do this in place since there was no room left at that

point -- after all that's why we had to do the reorgani-

zation.

The actual representation was variable length with

each element prefixed by a varying length type indi-

cator. In order to avoid having most code parse the

formula the last by was marked $ff (or 0xff in today's

representation). It turned out that valid cell references

at the edges of the sheet looked like this and created

some interesting bugs.

http://frankston.com/public
http://www.hpmuseum.org/rpn.htm

Implementing VisiCalc/Bob Frankston 9 10/12/2015 20:07

The program was tuned for the Apple]['s 6502 pro-

cessor. It processes 8 bits at a time and has up to

64KB bytes. The program was tuned to this processor

 Arrays of 16 bit values were split into two 8

bit arrays so that the value could be incre-

mented or decremented in a single operation

in a loop.

 Loops tended to go from the high to low value

since this saved a byte in each loop

The assembler had macros so that instead of directly

coding to the machines conditional instructions I

could use an "aif/aelse/aendif" set in order to assure

that the structure of the code was maintained. There

was a special "calret" (call/return) operator that was

used for calling a subroutine at the end of a sequence

of code. It generated an efficient jump instruction but

the reader could assume that the code continued and

returned at that point instead of wondering about an

unstructured transfer.

Though there was a very strong emphasis on efficien-

cy there was even a strong emphasis on readability.

Anything that might surprise someone reading the

code was carefully documented. My assumption was

that I would forget those key points myself. It also

helped others who would read the code but the prima-

ry audience was me in the fog of coding.

The spreadsheet array itself was designed for efficient

processing.

 The spreadsheet itself had a guard row so that

there was no need to constantly check against

the bounds but sometimes an operation, such

as replicate would skip over this guard and

would simply wrap back. It might have pro-

duced strange results but no damage.

 The insert operation was really a move and it

fail if the last row was occupied. The bias was

towards assuming that everything was in the

upper left.

 Though I knew how to constructed shared

structures the formulas were copied into each

cell. Attempting to share the representation

would have added complexity and we would

have had to hide this from the user in order to

make irregularities in the spreadsheet normal.

Programs that emphasized regularity failed

because they did time series well and every-

thing else poorly.

Memory and Patching

Memory was clearly limited hence the care to save

every byte of code. The original goal was to fit the

program and the operating system and the screen into

16KB but the code grew to 20KB so we required a

32KB machine but by the time we shipped 48KB was

common. Shortly before we shipped Apple sent us

their expanded memory card. It was created in order

to be able to run UCSD Pascal. I quickly hacked the

code to support the extra memory but only used 12KB

in order to avoid having to remap addresses in order

to use the remaining memory on the board. I didn't

want to risk introducing subtle errors at the last mi-

nute.

Later other companies introduced memory boards and

patched the code to reference the additional memory.

I found it amazing that people went through so much

trouble to figure out the code and make changes. I

was so concerned about efficiency that I over-

engineered the program for performance. It turned out

that there was plenty of slack that allowed one to add

extra code for extended memory but even more sur-

prising was that people figured it out without listings.

The code itself was very readable, at least if you had

the source and realized that all those jumps were

"call/return" sequences rather than random changes in

the path of execution. Because of legal issues I wasn't

able to keep a copy of such disassemblies but I'm very

interested in compare them side by side. When I get a

chance I want to scan in a listing for those curious.

There were also companies that extended the Ap-

ple][with video cards that could display 80 columns.

Here too they created their own patches. I'm curious

about how the techniques they used and how reliable

these changes were. An interesting question which I

didn't think of was whether you could combine patch-

es if you had a memory board with an extended video

card. Probably not.

We could've made VisiCalc more adaptable but it was

difficult to make it a priority and the strained relation-

ships with our publisher (Personal Software which

later renamed itself VisiCorp after its premier product)

made it difficult for us to work directly with such

third parties.

http://frankston.com/public
http://www.ucsd.edu/

Implementing VisiCalc/Bob Frankston 10 10/12/2015 20:07

Tools and Environment

We started programming by using the tools from

ECD on Multics. I worked at night when the comput-

er time cost $1/hour. Honeywell also took advantage

of the low fee to use the machine at night to develop

the Ada language for the military but those develop-

ers worked during their day from France.

Once we formed the company we decided to buy our

own computer. Prime was trying to follow in Multics'

path and seemed like a reasonable choice. It had a

PL/1 compiler which made it easy for me to port

some of my work. The first project was to implement

a simple editor and then an assembler and other de-

velopment tools. On the side I evolved an editor that

was originally supposed to be a line editor (QED) into

a screen editor (Emacs). Seth Steinberg who had

worked at MIT Architecture Machine Group added a

lisp-like language and Emacs became a very useful

tool. We even programmed an email system within

the editor. It also allowed us to create tools to assist in

formatting the code and other housekeeping.

Later we developed our own language and tools to

make it easier to code and to write for multiple plat-

forms but that's a separate topics. For now I'm focus-

ing on the early days of VisiCalc. Once we had grown

we used more advanced tools such as an in-circuit

emulator which allowed us to examine code as it exe-

cuted. It proved itself invaluable when I found that

the reason my code was failing was that the memory

ship was defective and the values changed on their

own! Sometimes it is the hardware!

Later Enhancements Versions

The Apple][version was the key version of VisiCalc.

Before we shipped we added the ability to run

demonstration programs and eventually evolved this

into a macro capability for advanced VisiCalc.

Before we shipped we started to grow the company

and moved from my attic to share office with John

Strayhorn's Renaissance Computing and hired Steve

Lawrence who I had worked with at ECD.

After the Apple][we created versions for the Com-

modore Pet and the Atari 800 since both use the same

processor. Brad Templeton (currently chairmen of the

EFF) helped us with the port to the Commodore Pet.

We hired Seth Steinberg to convert the code to the

Z80 and he did a very faithful port. He was very

skilled and recognized the goal was to keep the code

base aligned rather than trying to show off his own

skills.

And then, well, that's another story.

On October 17th we finally shipped the prototype,

now dubbed the production version, of VisiCalc.

Notes

John Doty's comments

John Doty sent a note about this piece and cc'ed me.

Interesting. Bob remembers me as a "programmer",

but my real job was production troubleshooter. I was

a grad student, and I was broke, so I had called my

friend Jerry Roberts about a job at his company, ECD.

He hired me to work on production of their 6502-

based MicroMind.

One of the problems I identified was the lack of a

good preship diagnostic, so I wrote one. It was the

kind of assembly code I hate: lots of loops and condi-

tionals. Keeping the branch targets straight was giv-

ing me a headache. I asked one of the programmers,

Dan Franklin, to add stacks to the macro expander. I

then used them to implement if, do, repeat, continue,

etc. This made my job a lot easier.

Bob implies that I wrote the assembler itself. I did

not: it already existed when I arrived. I don't remem-

ber who wrote it (Spencer Love perhaps?).

The programmers quickly adopted my macros. Bob

and most of the others were MIT EECS students and

graduates, steeped in the PL/I mainframe culture of

that department at that time. Assembly language on a

micro was culture shock: I suppose anything that

made the programming process more familiar was

welcome.

Of course, I had learned assembly language on the

1130. But that's another story...

http://frankston.com/public
http://www.multicians.org/mepap.html
http://www.eff.org/

Implementing VisiCalc/Bob Frankston 11 10/12/2015 20:07

I should note that I had actually done a lot of assem-

bly language programming over the years but always

try to use the most effective tool I could find. Even

when programming in assembler on the IBM 360 I

tried to keep my code structured because I knew that

if I wasn't very careful to keep my code very simple I

wouldn't be able to understand it myself. No wonder

people were surprised to find out I could write very

compact code since I only did it when there was a real

need. Sometimes it's even necessary to build a piece

of hardware to accomplish the task.

Later in the email exchange John added

I should also note that there's another spreadsheet connec-

tion in this story. The diagnostic I wrote for ECD incorpo-

rated some ideas I'd gotten from Jon Sachs a couple of

years earlier when we were struggling with a flaky Nova

computer.

This connection with Jonathon Sachs is just one of a num-

ber of ways we crossed paths one-off. I hope someone can

take the initiative to trace down the paths of people and

their ideas -- you'll find a very dense fabric of interconnec-

tions. This was especially true when there was a small ac-

ademic community doing research but is still true today

within the various computing communities.

http://frankston.com/public

