
Beyond Limits/Bob Frankston 1 March 1st, 1997 

Beyond Limits 

Natural Limits? 

Contents 
ACM Permission ................................................................ 1 

Introduction ........................................................................ 1 

Are we running into natural limits? ............................... 1 

The First Fifty Years .......................................................... 2 

Rapid Change and Innovation ........................................ 2 

The Marketplace and Creative Solutions ....................... 2 

The Evolving Nature of Programming ........................... 3 

From Programming to Problem Solving ........................ 4 

Communications and computing ................................... 4 

Generations .................................................................... 5 

Becoming the infrastructure ............................................... 5 

Interactions ..................................................................... 5 

Scalability ...................................................................... 6 

Social Systems ............................................................... 6 

Towards Resiliency ........................................................ 7 

Conclusion ......................................................................... 7 

 

ACM Permission 
Permission to make digital or hard 

copies of part or all of this work for 

personal or classroom use is granted 

without fee provided that copies are 

not made or distributed for profit or 

commercial advantage and that cop-

ies bear this notice and the full cita-

tion on the first page. Copyrights for 

components of this work owned by 

others than ACM must be honored. 

Abstracting with credit is permitted. 

To copy otherwise, to republish, to 

post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. 

Note: This paper has been published in "Beyond Calcula-

tion: The Next Fifty Years of Computing"; ISBN 0-387-

94932-1.  

Important: This copy is not the official ACM copy. You 

should not reproduce it since it doesn't reflect any editing 

changes in the printed version and may confuse the issue. 

If you do want to pass the URL to others, please send me 

mail. Thanks.  

Introduction 
The first million was easy. Computers have improved by a 

factor of millions in price, performance, capacity and ca-

pability in their first fifty years. 

We've come to expect this improvement. Memory prices, 

for example, halve every 18 months (according to Moore's 

Law), CPU's get faster and software does more. Today's 

desktop computers are far more powerful than the main-

frame computers from 25 years ago. 

Are we running into natural limits? 
In the excitement about what we've accomplished we 

should remember that we have not fulfilled many of the 

promises of very intelligent machines. If anything, we've 

come to see the computer as a fancy calculator or word 

processor and little more. Shouldn't we expect more from 

these systems? More to the point, why are computers so 

hard to use? 

While we might reach limits on particular technologies, we 

are far from the limits on what we can do with computers. 

The pace of change is limited only by our ability to inno-

vate. This pace has been accelerating because the comput-

er itself is our key tool. As we improve the computers, we 

increase our ability to improve them. 

As we innovate, we keep changing the nature of computers. 

The "computer" itself is a device that performs computa-

tions. The next stage shifts the focus from what we can do 

in the computers to what we can accomplish with them as 

elements in the larger infrastructure. The computers them-

selves will "disappear into the woodwork". Our challenge 

is to learn how to master this new arena – one in which we 

are not writing programs but adding intelligence to every-

thing around us. The limit is in our ability to manage com-

plexity. It is a world in which resiliency is more important 

than perfection. A resilient system is one that can continue 

to function in the midst of the chaos and failure which is 

the norm. 

As a developer, I'm very concerned with how we evolve 

computing. The challenges of complexity are overwhelm-

ing. When we back and observe the history of computing,, 

the individual changes fade into the grand forest of innova-
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tion. Stepping further backing, computing itself is a part of 

as opposed to apart from the evolutionary process of inno-

vation. 

Step too far back and we fail to see that the evolution of 

computing has not been uniform. What we got isn't neces-

sarily what we asked for. But it is in the nature of systems 

to exploit unexpected advantages. 

The history of computers has also been rife with failed 

promises and frustrated expectations. Yet these tend to be 

forgotten in the excitement of what we can – almost – do.   

Once again, we are at a transition point. (When are we 

not?). We are leaving the confines of the isolated computer 

and becoming the infrastructure; an infrastructure of intel-

ligent elements. And we have no idea where it will lead 

but we can be sure that the pace of change will continue to 

accelerate. 

The First Fifty Years 

Rapid Change and Innovation 
When four-function calculators were first introduced they 

cost $1000 (in 1997 dollars) and now they are given away 

free, the cost being covered by the advertisements on the 

back. Not only does a wristwatch contain a computer, but 

it plays music and, soon, may also be a telephone. 

The first half century of computers has been a period of 

rapid advancement in hardware and software design. 

This rapid pace was driven by many innovations. Core 

memory was created to meet the needs of the early com-

puters. Semiconductors were invented separately but were 

crucial to the ability to create large systems. But even be-

fore transistors became widely available, tube technology 

had been advanced beyond anything believed possible in 

the days of radio. 

Equally important were the improvements in software. 

Operating systems were created to make efficient use of 

expensive hardware; tools were created to make program-

ming simpler. These innovations used existing hardware 

existing. Only after the software was available was the 

hardware tuned to meet the needs of the software. The im-

provements in software are characterized by Corbató’s law 

which states that the number of lines of code is the same, 

independent of the language used. The more we can lever-

age programmers with tools that make it easier to express 

their algorithms, the more productive they are 

Projects that required innovating in too many areas at once 

were unlikely to succeed. The IBM 360 and the Multics 

project were notable exceptions and both experienced long 

delays in delivering on their promises. The lessons of why 

these projects were so difficult are still relevant today. 

Fred Brooks' The Mythical Man Month applies to any 

complex system, not just a large pride of programmers. 

After the success of these first fifty years, are we running 

into the limits on what computers can do? What if we can't 

make circuits much smaller than they are now, what if we 

can't dissipate the heat? The size of an atom hasn't shrunk 

and you need at least one to make a wire. 

This mood of uncertainty about our ability to overcome 

limits is not new. In 1798 Thomas Robert Malthus wrote 

his Essay on the Principle of Population as It Affects the 

Future Improvement of Society. His basic claim was that 

we were doomed to starve because population increases 

exponentially but food sources increase linearly. 

This pessimistic view fails to take into account the nature 

of change and innovation. It is necessary to be flexible and 

build upon the innovations available rather than just im-

proving already available technologies. While there have 

been many technological advances in food production, it 

has also been necessary to improve distribution and to lim-

it population growth. The innovations build on each other 

but are not rigidly dependent upon each other. If we have 

better distribution we can bring food from farther away or 

we can improve the local crop yield. If we have higher 

agricultural productivity we can move to the city. 

With computers we have an additional element – the com-

puters themselves are direct agents in the process of inno-

vation. 

The Marketplace and Creative Solutions 
The evolution of personal computers was accelerated be-

cause electronic spreadsheets appealed to investors. The 

marketplace directly funded the development of the tech-

nology. This is a particularly dramatic example of the val-

ue of a marketplace in driving innovation. 

The size of the marketplace was also important for a varie-

ty of approaches to coexist and flourish enriching the store 

of concepts available for reuse. 

The development of graphics processors is a good example 

of a sufficiently large specialized market. 3D graphics pro-

cessors can be targeted at consumer games and then used 

for commercial visualization while retaining the low price 

of the large consumer marketplace.. 

Innovations are typically in service of a need. In the case 

of communications, a major need is increased bandwidth. 

We can increase bandwidth by improving signal pro-

cessing or by compressing the data. As we run into the 

limits of the signal speed, we improve compression. Voice 

compression reduced bandwidth requirements from 

32Kbps to 9.6Kbps or less in a few years. Some of this has 

http://frankston.com/public


Beyond Limits/Bob Frankston 3 March 1st, 1997 

been due to faster processors and some due to algorithms 

such as modeling the constraints of the human mouth. 

To the user, communications simply became better 

(Cheaper? More capable? Faster?). What seems to be a 

uniform process of improvement is composed of disparate 

elements. 

The Evolving Nature of Programming 
The dramatic changes in hardware often obscure changes 

in software. We've gone from wiring plug-boards for each 

calculation to drawing a description of what we want them 

to do. In some cases the computer watches what you do 

and tries to offer its own suggestions which not always 

appreciated. 

Using the computer itself as the tool for its own program-

ming has been central. Assemblers allowed machine in-

structions to be coded symbolically; later compilers con-

verted program descriptions into machine instructions; and 

development environments became available to manage 

the process. Note that these terms: "assemblers", "compil-

ers" and even "computers" come from human jobs of simi-

lar functions but the machines have become the agents for 

these tasks. 

The meaning of programming has itself evolved. Initially 

the focus has been on coding the steps involved in solving 

an identified problem. As the tools become more powerful, 

the coding aspects have become automated and the focus 

has been on the description of the problem itself. In fact, 

original programming languages were called Automatic 

Programming tools since they automatically generated the 

program from the description – we now refer to the de-

scription as the program. But as our capabilities have 

grown so have our expectations and thus our requirements. 

The term coding moved from specifying machine instruc-

tions to writing in a language such as COBOL or 

FORTRAN. Later generations of tools allowed for describ-

ing the desired result rather than an algorithm. One might 

specify a report by giving a sample rather than the details 

of how to construct the report. 

The challenge has shifted from providing the professional 

programmer with tools to providing the "users" with the 

tools to directly interact with the computer. The original 

users of FORTRAN saw themselves as, and were, scien-

tists and engineers solving their own problems. As their 

needs grew they had to choose between focusing on pro-

gramming computers or on their area of professional ex-

pertise. For many, programming was more seductive. 

As we've expanded the set of "programmers" to include, 

potentially, anyone using a computer, we've also changed 

the nature of programming. Rather than specifying a series 

of steps, one can give examples or a description of what 

should be done rather than the detailed steps for how to do 

it. 

Even if these users approach the computer as an improved 

version of an earlier device such as a typewriter, the real 

power comes from understanding the new capabilities. 

Rather than "typing", one uses rule-based "styles". Instead 

of being concerned with the attributes of each "section 

head", one tags (or "codes") each header as such and then 

can set the properties of all heads and, perhaps, subheads 

as well, at once. Later one can add some rules to describe 

what happens if the head is stuck at the bottom of a page 

or how to handle odd pages differently from even pages. It 

is not necessary to have this understanding to use the com-

puter to type, but those who do are rewarded with a more 

effective tool. Of course, the software vendors are trying to 

garner the largest possible market and so have an interest 

in making the capabilities more accessible. Features under-

stood by only a few are liable to be discarded. 

Likewise, the spreadsheet is not just a digital analog of a 

calculator but a tool that allows for experimentation. (Only 

later did it become a presentation tool, but that's another 

story). In fact, the electronic spreadsheet derived its power 

from allowing a user to specify an algorithm by "doing it" 

and then being able to repeat the operation with new val-

ues. The name "VisiCalc" emphasized the visibility of this 

process. We were, in fact, getting people to program with-

out realizing that's what they were doing. 

It is this ability to use the computer as an agent by "pro-

gramming" it with behavior that is central to the power of 

computing. It is important to realize that we have convert-

ed the user into a programmer just as the phone dial con-

verted people (users?) into phone operators. In the 1930's 

there were some estimates that by the 1950's we'd need to 

have everyone to be a phone operator in order to satisfy 

the demand. The effect of automating the phone system 

can be viewed as not eliminating phone operators but mak-

ing everyone a phone operator. 

Requiring a separate class of programmers who translate 

user requirements into algorithms is not only expensive but 

ultimately frustrates our ability to make effective use of 

the technology. It is this requirement for the specification 

of behaviors and effective algorithms that is at the heart of 

the societal change. Just as there weren't going to be 

enough phone operators, there aren't enough programmers 

to add all the little bits of intelligent behavior we are going 

to expect of the infrastructure. And it is this limitations 

imposed by this need to specify behavior that is part of the 

upcoming challenge. 

The ability to be descriptive is an important twist on pro-

gramming in both the spreadsheet and the telephone sys-

tem. Rather than specifying programming as a series of 

http://frankston.com/public


Beyond Limits/Bob Frankston 4 March 1st, 1997 

step by step operations, the user describes the behavior in a 

"language" that is shared with the computer. This allows 

the computer to do more than blindly execute the steps. It 

can also explain what is happening and recover from many 

possible problems. But there is still enough freedom left to 

the user to "reach a wrong [telephone] number" or specify 

an incorrect formula on the spreadsheet. 

From Programming to Problem Solving 
One way to characterize problem solving is as the process 

of making the complex simple. 

Computer systems come from a heritage of extremely 

complex systems built with seeming perfection. Error rates 

in the trillionths and better are not unusual. Initially this 

was achieved by careful engineering. Programs were care-

fully audited to be seemingly bug-free. We even had the 

notion of proving programs correct. 

At best, one can prove that two representations of an algo-

rithm are equivalent but that doesn't address the question 

of whether the program meets a vaguer requirement. The 

question is whether the program works properly in service 

of some larger goal. There may, in fact, be multiple con-

flicting goals. 

Rather than proving programs correct, we must make them 

simple enough to understand. 

The Copernican heliocentric solar system was more than a 

mathematical reformulation of Ptolemaic system with the 

Earth at the center. It represented a better understanding 

the motion of the planets. The heuristic is that the simpler 

solution is better (Occam's razor). We can take this one 

step further and argue that simplification is our goal. 

But this begs the question since it just shifts the problem to 

finding the right representation which is unsolvable in the 

general case. Both because it reminds us that the nature of 

the solution is a function of the context in which the prob-

lem is being solved (ambiguity) and simply because it is 

simply a restatement of general problem-solving. 

But there are elements of a solution here. While we can't 

necessarily find the right decomposition, we can iterate on 

the problem and redecompose the problem as we improve 

our understanding. In practice, if we start out with an ini-

tial structure we can recompose the set of elements, or ob-

jects, as our understanding is refined. In terms of object-

oriented system, as long as we have control over our set of 

the problem space, we can iterate on the system design. 

This is an effective technique but it becomes more difficult 

as the scope increases. Fred Books addressed some of the 

implications of scale in the Mythical Man Month. The 

same issues that arise with adding people to a task also 

arise when building a large system where iterating on the 

whole design becomes increasingly difficult. 

When we have independent interacting systems we don't 

necessarily have the option of recomposing them. This 

places a premium on getting an effective representation the 

first time but, inevitably, the initial solution will need to be 

adjusted as the situation changes. To the extent we can, we 

must be prepared for such change. 

Communications and computing 
The impact of the Web has been dramatic – more than the 

Internet itself. In the "calculator era" computers stood en-

tirely alone. They took input on paper tape or cards and 

produced results on a printer or maybe punched out some 

result for later use. That was a long time ago. In the 1960's 

time sharing became common and in the 70's and 80's, the 

Arpanet, later the Internet, started to link systems together. 

Local Area Networks (LANs) became common in the 80's. 

The impact of the Web was dramatic because it brought 

connectivity to the center of computing. 

Like VisiCalc, the Web came about at just the "right time". 

More to the point, there was a waiting ecological niche. 

The Internet was sufficiently ubiquitous to be the basis for 

a global infrastructure. What was needed was an effective 

way to name elements in this network. The key to the URL 

(Universal Resource Locator) is that it is a pragmatic name 

that is not only where a resource is but how to access it. 

The "http" in the URL could also be "ftp", for example, for 

File Transfer Protocol. Thus we absorb the old protocols 

into the new without giving up any of the old capabilities. 

A graphical browser (Mosaic) for the widely available 

consumer platforms made the power available beyond the 

scientific community that the Web was originally created 

for. 

Once again we have a positive feedback cycle with the 

Web growing in scope because of the Web. Not only do 

we have the tight loop with the Web being the means of 

improving the Web – each iteration brings in more partici-

pants and their contributions. The result is a very rapid 

growth, or a hypergrowth. 

The Internet protocols were themselves built upon simple 

standards with the main tools being a terminal program 

(Telnet) and the text editor. The Web came about during a 

period when the Internet seemed to be getting saturated 

and was suffering from slowdowns and other results of 

overextension. 

Yet the Internet is now much larger with many times more 

users. Of course, there are the standard predictions of col-

lapse. The difference is that the Web has transformed the 

Internet from a tool for the cognoscenti to one of the fun-

damental engines of society. 

http://frankston.com/public


Beyond Limits/Bob Frankston 5 March 1st, 1997 

It won't fail because we can't let it fail. Our ability to learn 

to be resilient in the face of failures will allow us to avoid 

the collapse that is characteristic of rigid systems. 

In the earlier example, we saw that there was a tradeoff 

between bandwidth and communications speed. With the 

Internet we have another communications tradeoff in the 

ability to use a very jittery and not fully reliable medium 

(the Internet) as an alternative to the well-engineered, 

isochronous PSTN or Public Switched Telephone Network. 

The impact will be profound because we're selling teleph-

ony components linked together with software rather than 

a single "dialtone" service. The threat to the phone net-

work is not just in the dramatically better economics of the 

Internet, it is also in the ability to define new telephony 

services purely in software. 

Generations 
We have a tendency to group together a set of changes into 

arbitrary "generations". There is a reality to this in that 

small changes aggregate to larger trends. Operating sys-

tems for mainframes serve to dole out scarce resources. 

Minis, being less expensive, were tuned for particular pur-

poses. Personal computers started out as an extreme sim-

plification of earlier computers for a very low price with 

limited utility. 

Generational change serves a necessary function of clear-

ing the underbrush of complex ideas so that new ideas can 

flourish. The radical simplification of computers in PC's 

has allowed the growth of new operating systems with 

great emphasis on the ad-hoc integration of applications. 

The term "application" itself represents a shift from em-

phasis on the isolated program to its role in service of a 

task. 

Though the various hypergrowth phenomena seem to 

come just in time out of nowhere, if we look closely we 

can see their antecedents. VisiCalc had screen editors and 

calculators, the Web had the WAIS, FTP, Telnet and Go-

pher, simpler access tools. CISC hardware had the RISC 

experience to draw upon. The hardware, software and, es-

pecially, networking growth are building upon themselves. 

For the last twenty five years the Internet has been grow-

ing in importance until it was unleashed by the Web. The 

interactions between applications over the Internet are an 

extended form of the cooperation among applications 

within the personal computer itself. This is setting the 

stage for the next change in the nature of computing. 

Becoming the infrastructure 
We are in the midst of a fundamental change in the nature 

of and the role of computing. We are creating a global 

communications medium that supports digital connectivity 

among the computing agents throughout the world. We are 

also deploying bits of intelligence throughout the infra-

structure. 

The growth of the Internet (often confused with the Web 

which is just a set of capabilities riding the Internet) is 

dramatic in its own right. What is less obvious is the 

growth of intelligent elements such as light bulbs that im-

plement their own lighting policies; or cars that use a local 

area network to coordinate their components and the glob-

al network to report diagnostic information and get traffic 

updates. 

The traditional approaches to system design posit that 

there is a system being designed. We are adding to a com-

plex system without any overall coordination. Once again 

we've introduced major sources of complexity without the 

corresponding means of dealing with it. We need to learn 

how. 

In a sense, the overwhelming scope of the problem con-

tains the seeds of how to approach a solution. Techniques 

that seemed sensible in a well-understood system just don't 

work. There is no single version of software to be updated. 

But, alas, cleverness allows us to keep up the illusion that 

we are still operating in the old world of self-contained 

systems. Remote Procedure Calls allow us to pretend that 

we are invoking a local subroutine when we might be us-

ing arbitrary resources on the network. 

The deception fails when there is something goes awry, 

even something as simple as a delay. The result appears as 

just one more case of computer unreliability rather than as 

a symptom of a fundamentally flawed the approach em-

bodied in the programming tools. 

The file system interface for a disk drive doesn't have the 

semantics for reporting that the network cable fell out. And 

the network itself fails to detect this since it is a mechani-

cal problem and not a "network" problem. 

The problems of naive extensions of existing solutions 

should sort itself out as we develop alternative approaches 

which focus on the interactions between systems New 

methodologies will have to be resilient enough to survive 

in a constantly changing, inconsistent environment by 

bending rather than failing. 

Interactions 
What happens between or among applications can be more 

important than what happens within them. 

A system consisting of a million well organized parts is 

not complex in the sense that a system of a hundred auton-

omous systems is. The real measure of complexity is not 

the number of elements but the number of (nonuniform) 

interactions. The way of dealing with this complexity is to 
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reduce the interactions. In psychology this is called 

"chunking" and humans seem to be able to process less 

than ten such chunks at once. This represents an extreme, 

but effective simplification of the world. In programming 

this can be a matter of finding a representation that allows 

us to factor the problem into subproblems with limited in-

teractions. 

Techniques such as structured programming, modular pro-

gramming and object oriented programming (to observe 

the evolution of the concepts) have been attempts to pro-

vide the programmer with structuring mechanisms. But 

they have mostly focused on interactions within a set of 

programs. By finding the proper structuring of a program 

we can decompose it into elements and then manage the 

interaction among the elements. Solving a problem by 

finding an effective representation is a recurring theme. 

The challenge is not simply to create programs in isolation 

but to create independent systems that interact. The inter-

actions are not preplanned. Furthermore, failures must be 

bounded and their propagation must be limited. In the 

world of the Internet, all systems are potentially intercon-

nected. Ideally local failures do not lead to failures of the 

entire system. Within a single computer, we can be very 

ambitious in designing interactions among systems and 

must sometimes completely reset the entire system to clear 

out the knots that form among these interactions. This is 

not an option for the systems that form the global infra-

structure. 

What makes the problem of managing the interactions 

even more difficult is that the systems are not necessarily 

well-managed – if they are managed at all. Increasingly 

"programs" are being provided by people who do not even 

view themselves as "programmers" and the linkages are 

not well understood. Mix in a little Internet and we have a 

powerful brew. 

Scalability 
In order to scale systems it is necessary to be able to re-

generate reliability. Normally when you multiply probabil-

ities of success, the result is to decrease the reliability at 

each stage. We've been able to defeat this phenomena by 

having a way to "understand" the constraints of a system 

and use this understanding to regenerate the likelihood of 

success. Active elements operating independently without 

sufficient defense against failure of other modules and 

without a description of how they should work together 

lack this regenerative property. 

We've pushed the limits of hardware by determining how 

to make locally reliable devices. Initially, for example, we 

could use a modem to send data across the country as 10 

characters a second simply by shifting between two fre-

quencies for the 1's and 0's.But now we send 28.8Kbps (or 

more!) across channels designed for 3Khz voice we are 

using complex algorithms to make up for the unreliability 

of the channel. We hide this complexity within the modem. 

Problems that are not amenable to a localized attack are 

much more difficult to solve. 

An important change is to shift from algorithmic pro-

gramming (traditional) to descriptive programming. The 

description limits the "program" to the common under-

standing between the describer (or user) and the computer. 

Describing the interactions between elements allows an 

observer (the computer) to assist in maintaining the integ-

rity of these interactions and in regenerating reliability. 

The description is only in terms of the common under-

standing and, like the railroad, can only go where track is 

already laid. We are thus limited by the speed at which we 

can lay tracks or define the language. It is the nature of the 

frontier for the attention to be focused at the leading edge. 

In a sense, the trailing standards setting is a form of track 

laying. As with railroad tracks the descriptions limited to 

the route or language chosen. 

The standards process itself must adjust to the pace of 

change and be more adaptable. In fact, standards setting is 

a competitive effort to deliver solutions. The ability of the 

fleet-footed IETF (Internet Engineering Task Force) to 

deliver sufficient, even if over simple solutions, has given 

it an advantage over the slower moving organizations 

which either standardize the past or create inflexible stand-

ards for the unknown. 

The IETF also has a further advantage of codifying prac-

tice rather than prescribing practice. X.400 embodied 

many assumptions about how email should work whereas 

the primitive protocols of the Internet, SMTP (Simple Mail 

Transport Protocol) coupled with domain naming, worked. 

Some of the limitations were later address with MIME en-

coding. This might be kludge layered upon kludge but it 

got the job done. 

There is now fear that the IETF itself has become too lad-

en with its own history. 

Social Systems 
Cooperating independent systems are, in effect, social sys-

tems. The participants try to interact by following rules 

that benefit them all. Norms are ideally derived by consen-

sus after experience. Ultimately, each individual must take 

some of the responsibility for its own behavior and fate. 

The Web is a good example. It spans continents and trav-

els through (near) space. And it normally works! 

The reason that it works is the unreliability of the world-

wide Internet. Each element of the web is constructed on 
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the assumption that it will encounter errors and surprises 

over which it has no control. The Web, despite its spectac-

ular growth and the vast number of services built on top of 

its protocols is simple and shallow. Simple in the sense 

that its architecture is understandable (so far) and shallow 

in that it isn't built upon layer upon layer but only using a 

simple transport protocol over a fairly robust connection 

protocol (HTTP on top of TCP/IP with HTML as a simple 

markup language). 

There is a normal progression from the simple and viable 

to the complex and fragile that endangers the very robust-

ness of the web. But it's core functionality will sustain it. 

The Web has also invigorated the Internet as a medium. 

The increased market size of the Internet due to the Web 

has spawned efforts such as Internet telephony. The Web 

is built upon the Internet, but the Internet is not limited to 

Web protocols. 

This meandering path of change and innovation leaves us 

without a simple rule when we want to go in a specific 

direction and are not willing to wait passively for accidents 

to deliver solutions. 

The basic principle of building a system out of cooperating 

elements applies. The key is to preserve robustness by hav-

ing each element not just preserve reliability but regenerate 

it. Ideally it should be possible to recompose capabilities 

among their elements and subelements. This is difficult in 

arms-length relationships, though even there, negotiation 

should be part of the normal interaction, at least at the de-

sign level. 

But what is most important is the attitude from which the 

problem is approached. Change and surprise are the nor-

mal state. To expect one design to continue to work is na-

ive and dangerous. The term "bit rot" describes the process 

by which a seemingly stable set of bits or programs degen-

erates over time. The bits don't change but their relation-

ship with their environment changes because of normal 

drift. 

The nature of the problems we are trying to solve has 

changed and so have the tools. Rather than writing pro-

grams, people are specifying rules or policies or local be-

havior as part of their normal interactions with the world. 

Yet we don't understand how to compose these into coher-

ent and explicable systems. We have had to learn the 

pragmatic debugging when theoretical debugging was 

proven impossible. Now we need to learn the heuristics 

that apply to compositing systems. To the extent that a sys-

tem of these local rules can be observed and "understood", 

we can assist the user in understanding the behavior of the 

system. 

This understanding needn't be full, just sufficient for to 

manage the interactions. In fact, we should expect that our 

understanding is incomplete and wrong so we can adapt to 

surprises. 

In general, a descriptive approach to specifying behavior is 

much better than an algorithmic one since it allows for an 

overseer to "understand" what is being requested whereas 

a procedural description must be evaluated step by step 

without an overview. One is able to be descriptive precise-

ly because the procedural elements are so well understood 

that they are incorporated into the larger system and we are 

simply calling upon these known elements of behavior. So 

we are back again to this cycle of building upon our previ-

ous understanding. The rate at which this process can 

propagate and iterate limits the rate of progress. 

Towards Resiliency 
The old goal was bug-free. The new goal is resiliency. It is 

much more important to recover from exceptions than to 

avoid them. The term "bug" is useful in describing a be-

havior in the purview of a single designer or design team. 

Failure to respond to the external failure or even simply 

the surprising behavior of another element is really differ-

ent than a bug within one's own program. 

This requires a shift in our thinking: from techniques for 

building programs to the integration of independent and 

partially defined elements. The programs are still there but 

so are other forms of specification such as policies and 

constraints. This is an environment in which surprises 

(AKA exceptions or failures) will be the norm. Since this 

is the infrastructure, there is no option for a complete "re-

boot", though local resets are allowed. 

This resiliency applies as well to the "programs" by people 

providing specifications for behavior. 

We are learning how to build resilient systems. The model 

of social systems provides some clues. At each scale there 

are organizations which define the limits the interactions 

with other organizations. These organizations also have 

mechanisms for regenerating local reliability. This is one 

of the tenets of the American federal government. 

Conclusion 
The world is full of limits imposed by physics and by the 

complexities of interacting chaotic systems. With clever-

ness and with the computer as tool for effecting computa-

tion we've pushed against these limits with great success. 

We'll continue to create faster and better systems. 

The challenge now is to shift our thinking from improving 

systems in isolation to how create an infrastructure of in-

teracting intelligent elements. We need to move from the 

goal of precise, bug-free but isolated, systems to resilient 

cooperating systems. Naively extending the rigid models 
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of computing will fail. But we can apply the lessons from 

earlier models of computing as long as we think them for 

this new arena. The solutions will be as much discovery as 

design. And we need to realize that it has always been so. 

The rapid changes we've seen in computing systems have 

been due to our ability to quickly create tools that extend 

our capabilities. We've now gotten to the point where these 

changes are no longer confined to isolated systems. 

The growth we've seen in the capabilities of computer sys-

tems is indeed remarkable but it can also be seen as the 

expected continuation of the hyper growth that occurs 

whenever there is a strong positive feedback cycle. 

This feedback cycle is fed by the computer's ability to 

serve as a tool in its own advancement. It is also a means 

to leverage innovation from a large number of people. 

Classic hypergrowth phenomena run out of resources or 

simply reach an unsupportable scale. We've avoided these 

limitations so far because the systems are becoming in-

creasingly-resource efficient. We've been able to scale the 

systems because we've been able to regenerate reliability at 

each level. 

This isn't always the case. We've been very unsuccessful in 

mastering the complexities of interactive systems and 

these complexities continue to increase as we interconnect 

systems and add intelligent elements throughout the sys-

tems. 

We are not limited in what we can do with the systems. 

Innovation will continue to surprise us, the Web and Inter-

net Telephony being but two of the most recent examples. 

The Malthusians are very aware of the problems and chal-

lenges they confront. It is not reasonable to simply accept 

the premise that things will get better. There is no certainty 

and the advancements may be disconcerting to those look-

ing for answers in terms of the current circumstances. 

But it is the very uncertainty and chaos which allows new 

ideas to vie for superiority. This can be disconcerting for 

those who are looking for obvious solutions. But it is an 

exciting environment for innovation. 

System design in the connected chaotic world requires re-

siliency. And we must regenerate reliability by discovering 

new simplicities. 

You can't always get what you want, 

But if you try sometimes you just might find 

You just might find 

You'll get what you need 

The Rolling Stones, 1969 
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