
Beyond Limits/Bob Frankston 1 March 1st, 1997

Beyond Limits

Natural Limits?

Contents
ACM Permission .. 1

Introduction .. 1

Are we running into natural limits? 1

The First Fifty Years .. 2

Rapid Change and Innovation .. 2

The Marketplace and Creative Solutions 2

The Evolving Nature of Programming 3

From Programming to Problem Solving 4

Communications and computing 4

Generations .. 5

Becoming the infrastructure ... 5

Interactions ... 5

Scalability .. 6

Social Systems ... 6

Towards Resiliency .. 7

Conclusion ... 7

ACM Permission
Permission to make digital or hard

copies of part or all of this work for

personal or classroom use is granted

without fee provided that copies are

not made or distributed for profit or

commercial advantage and that cop-

ies bear this notice and the full cita-

tion on the first page. Copyrights for

components of this work owned by

others than ACM must be honored.

Abstracting with credit is permitted.

To copy otherwise, to republish, to

post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Note: This paper has been published in "Beyond Calcula-

tion: The Next Fifty Years of Computing"; ISBN 0-387-

94932-1.

Important: This copy is not the official ACM copy. You

should not reproduce it since it doesn't reflect any editing

changes in the printed version and may confuse the issue.

If you do want to pass the URL to others, please send me

mail. Thanks.

Introduction
The first million was easy. Computers have improved by a

factor of millions in price, performance, capacity and ca-

pability in their first fifty years.

We've come to expect this improvement. Memory prices,

for example, halve every 18 months (according to Moore's

Law), CPU's get faster and software does more. Today's

desktop computers are far more powerful than the main-

frame computers from 25 years ago.

Are we running into natural limits?
In the excitement about what we've accomplished we

should remember that we have not fulfilled many of the

promises of very intelligent machines. If anything, we've

come to see the computer as a fancy calculator or word

processor and little more. Shouldn't we expect more from

these systems? More to the point, why are computers so

hard to use?

While we might reach limits on particular technologies, we

are far from the limits on what we can do with computers.

The pace of change is limited only by our ability to inno-

vate. This pace has been accelerating because the comput-

er itself is our key tool. As we improve the computers, we

increase our ability to improve them.

As we innovate, we keep changing the nature of computers.

The "computer" itself is a device that performs computa-

tions. The next stage shifts the focus from what we can do

in the computers to what we can accomplish with them as

elements in the larger infrastructure. The computers them-

selves will "disappear into the woodwork". Our challenge

is to learn how to master this new arena – one in which we

are not writing programs but adding intelligence to every-

thing around us. The limit is in our ability to manage com-

plexity. It is a world in which resiliency is more important

than perfection. A resilient system is one that can continue

to function in the midst of the chaos and failure which is

the norm.

As a developer, I'm very concerned with how we evolve

computing. The challenges of complexity are overwhelm-

ing. When we back and observe the history of computing,,

the individual changes fade into the grand forest of innova-

http://frankston.com/public

Beyond Limits/Bob Frankston 2 March 1st, 1997

tion. Stepping further backing, computing itself is a part of

as opposed to apart from the evolutionary process of inno-

vation.

Step too far back and we fail to see that the evolution of

computing has not been uniform. What we got isn't neces-

sarily what we asked for. But it is in the nature of systems

to exploit unexpected advantages.

The history of computers has also been rife with failed

promises and frustrated expectations. Yet these tend to be

forgotten in the excitement of what we can – almost – do.

Once again, we are at a transition point. (When are we

not?). We are leaving the confines of the isolated computer

and becoming the infrastructure; an infrastructure of intel-

ligent elements. And we have no idea where it will lead

but we can be sure that the pace of change will continue to

accelerate.

The First Fifty Years

Rapid Change and Innovation
When four-function calculators were first introduced they

cost $1000 (in 1997 dollars) and now they are given away

free, the cost being covered by the advertisements on the

back. Not only does a wristwatch contain a computer, but

it plays music and, soon, may also be a telephone.

The first half century of computers has been a period of

rapid advancement in hardware and software design.

This rapid pace was driven by many innovations. Core

memory was created to meet the needs of the early com-

puters. Semiconductors were invented separately but were

crucial to the ability to create large systems. But even be-

fore transistors became widely available, tube technology

had been advanced beyond anything believed possible in

the days of radio.

Equally important were the improvements in software.

Operating systems were created to make efficient use of

expensive hardware; tools were created to make program-

ming simpler. These innovations used existing hardware

existing. Only after the software was available was the

hardware tuned to meet the needs of the software. The im-

provements in software are characterized by Corbató’s law

which states that the number of lines of code is the same,

independent of the language used. The more we can lever-

age programmers with tools that make it easier to express

their algorithms, the more productive they are

Projects that required innovating in too many areas at once

were unlikely to succeed. The IBM 360 and the Multics

project were notable exceptions and both experienced long

delays in delivering on their promises. The lessons of why

these projects were so difficult are still relevant today.

Fred Brooks' The Mythical Man Month applies to any

complex system, not just a large pride of programmers.

After the success of these first fifty years, are we running

into the limits on what computers can do? What if we can't

make circuits much smaller than they are now, what if we

can't dissipate the heat? The size of an atom hasn't shrunk

and you need at least one to make a wire.

This mood of uncertainty about our ability to overcome

limits is not new. In 1798 Thomas Robert Malthus wrote

his Essay on the Principle of Population as It Affects the

Future Improvement of Society. His basic claim was that

we were doomed to starve because population increases

exponentially but food sources increase linearly.

This pessimistic view fails to take into account the nature

of change and innovation. It is necessary to be flexible and

build upon the innovations available rather than just im-

proving already available technologies. While there have

been many technological advances in food production, it

has also been necessary to improve distribution and to lim-

it population growth. The innovations build on each other

but are not rigidly dependent upon each other. If we have

better distribution we can bring food from farther away or

we can improve the local crop yield. If we have higher

agricultural productivity we can move to the city.

With computers we have an additional element – the com-

puters themselves are direct agents in the process of inno-

vation.

The Marketplace and Creative Solutions
The evolution of personal computers was accelerated be-

cause electronic spreadsheets appealed to investors. The

marketplace directly funded the development of the tech-

nology. This is a particularly dramatic example of the val-

ue of a marketplace in driving innovation.

The size of the marketplace was also important for a varie-

ty of approaches to coexist and flourish enriching the store

of concepts available for reuse.

The development of graphics processors is a good example

of a sufficiently large specialized market. 3D graphics pro-

cessors can be targeted at consumer games and then used

for commercial visualization while retaining the low price

of the large consumer marketplace..

Innovations are typically in service of a need. In the case

of communications, a major need is increased bandwidth.

We can increase bandwidth by improving signal pro-

cessing or by compressing the data. As we run into the

limits of the signal speed, we improve compression. Voice

compression reduced bandwidth requirements from

32Kbps to 9.6Kbps or less in a few years. Some of this has

http://frankston.com/public

Beyond Limits/Bob Frankston 3 March 1st, 1997

been due to faster processors and some due to algorithms

such as modeling the constraints of the human mouth.

To the user, communications simply became better

(Cheaper? More capable? Faster?). What seems to be a

uniform process of improvement is composed of disparate

elements.

The Evolving Nature of Programming
The dramatic changes in hardware often obscure changes

in software. We've gone from wiring plug-boards for each

calculation to drawing a description of what we want them

to do. In some cases the computer watches what you do

and tries to offer its own suggestions which not always

appreciated.

Using the computer itself as the tool for its own program-

ming has been central. Assemblers allowed machine in-

structions to be coded symbolically; later compilers con-

verted program descriptions into machine instructions; and

development environments became available to manage

the process. Note that these terms: "assemblers", "compil-

ers" and even "computers" come from human jobs of simi-

lar functions but the machines have become the agents for

these tasks.

The meaning of programming has itself evolved. Initially

the focus has been on coding the steps involved in solving

an identified problem. As the tools become more powerful,

the coding aspects have become automated and the focus

has been on the description of the problem itself. In fact,

original programming languages were called Automatic

Programming tools since they automatically generated the

program from the description – we now refer to the de-

scription as the program. But as our capabilities have

grown so have our expectations and thus our requirements.

The term coding moved from specifying machine instruc-

tions to writing in a language such as COBOL or

FORTRAN. Later generations of tools allowed for describ-

ing the desired result rather than an algorithm. One might

specify a report by giving a sample rather than the details

of how to construct the report.

The challenge has shifted from providing the professional

programmer with tools to providing the "users" with the

tools to directly interact with the computer. The original

users of FORTRAN saw themselves as, and were, scien-

tists and engineers solving their own problems. As their

needs grew they had to choose between focusing on pro-

gramming computers or on their area of professional ex-

pertise. For many, programming was more seductive.

As we've expanded the set of "programmers" to include,

potentially, anyone using a computer, we've also changed

the nature of programming. Rather than specifying a series

of steps, one can give examples or a description of what

should be done rather than the detailed steps for how to do

it.

Even if these users approach the computer as an improved

version of an earlier device such as a typewriter, the real

power comes from understanding the new capabilities.

Rather than "typing", one uses rule-based "styles". Instead

of being concerned with the attributes of each "section

head", one tags (or "codes") each header as such and then

can set the properties of all heads and, perhaps, subheads

as well, at once. Later one can add some rules to describe

what happens if the head is stuck at the bottom of a page

or how to handle odd pages differently from even pages. It

is not necessary to have this understanding to use the com-

puter to type, but those who do are rewarded with a more

effective tool. Of course, the software vendors are trying to

garner the largest possible market and so have an interest

in making the capabilities more accessible. Features under-

stood by only a few are liable to be discarded.

Likewise, the spreadsheet is not just a digital analog of a

calculator but a tool that allows for experimentation. (Only

later did it become a presentation tool, but that's another

story). In fact, the electronic spreadsheet derived its power

from allowing a user to specify an algorithm by "doing it"

and then being able to repeat the operation with new val-

ues. The name "VisiCalc" emphasized the visibility of this

process. We were, in fact, getting people to program with-

out realizing that's what they were doing.

It is this ability to use the computer as an agent by "pro-

gramming" it with behavior that is central to the power of

computing. It is important to realize that we have convert-

ed the user into a programmer just as the phone dial con-

verted people (users?) into phone operators. In the 1930's

there were some estimates that by the 1950's we'd need to

have everyone to be a phone operator in order to satisfy

the demand. The effect of automating the phone system

can be viewed as not eliminating phone operators but mak-

ing everyone a phone operator.

Requiring a separate class of programmers who translate

user requirements into algorithms is not only expensive but

ultimately frustrates our ability to make effective use of

the technology. It is this requirement for the specification

of behaviors and effective algorithms that is at the heart of

the societal change. Just as there weren't going to be

enough phone operators, there aren't enough programmers

to add all the little bits of intelligent behavior we are going

to expect of the infrastructure. And it is this limitations

imposed by this need to specify behavior that is part of the

upcoming challenge.

The ability to be descriptive is an important twist on pro-

gramming in both the spreadsheet and the telephone sys-

tem. Rather than specifying programming as a series of

http://frankston.com/public

Beyond Limits/Bob Frankston 4 March 1st, 1997

step by step operations, the user describes the behavior in a

"language" that is shared with the computer. This allows

the computer to do more than blindly execute the steps. It

can also explain what is happening and recover from many

possible problems. But there is still enough freedom left to

the user to "reach a wrong [telephone] number" or specify

an incorrect formula on the spreadsheet.

From Programming to Problem Solving
One way to characterize problem solving is as the process

of making the complex simple.

Computer systems come from a heritage of extremely

complex systems built with seeming perfection. Error rates

in the trillionths and better are not unusual. Initially this

was achieved by careful engineering. Programs were care-

fully audited to be seemingly bug-free. We even had the

notion of proving programs correct.

At best, one can prove that two representations of an algo-

rithm are equivalent but that doesn't address the question

of whether the program meets a vaguer requirement. The

question is whether the program works properly in service

of some larger goal. There may, in fact, be multiple con-

flicting goals.

Rather than proving programs correct, we must make them

simple enough to understand.

The Copernican heliocentric solar system was more than a

mathematical reformulation of Ptolemaic system with the

Earth at the center. It represented a better understanding

the motion of the planets. The heuristic is that the simpler

solution is better (Occam's razor). We can take this one

step further and argue that simplification is our goal.

But this begs the question since it just shifts the problem to

finding the right representation which is unsolvable in the

general case. Both because it reminds us that the nature of

the solution is a function of the context in which the prob-

lem is being solved (ambiguity) and simply because it is

simply a restatement of general problem-solving.

But there are elements of a solution here. While we can't

necessarily find the right decomposition, we can iterate on

the problem and redecompose the problem as we improve

our understanding. In practice, if we start out with an ini-

tial structure we can recompose the set of elements, or ob-

jects, as our understanding is refined. In terms of object-

oriented system, as long as we have control over our set of

the problem space, we can iterate on the system design.

This is an effective technique but it becomes more difficult

as the scope increases. Fred Books addressed some of the

implications of scale in the Mythical Man Month. The

same issues that arise with adding people to a task also

arise when building a large system where iterating on the

whole design becomes increasingly difficult.

When we have independent interacting systems we don't

necessarily have the option of recomposing them. This

places a premium on getting an effective representation the

first time but, inevitably, the initial solution will need to be

adjusted as the situation changes. To the extent we can, we

must be prepared for such change.

Communications and computing
The impact of the Web has been dramatic – more than the

Internet itself. In the "calculator era" computers stood en-

tirely alone. They took input on paper tape or cards and

produced results on a printer or maybe punched out some

result for later use. That was a long time ago. In the 1960's

time sharing became common and in the 70's and 80's, the

Arpanet, later the Internet, started to link systems together.

Local Area Networks (LANs) became common in the 80's.

The impact of the Web was dramatic because it brought

connectivity to the center of computing.

Like VisiCalc, the Web came about at just the "right time".

More to the point, there was a waiting ecological niche.

The Internet was sufficiently ubiquitous to be the basis for

a global infrastructure. What was needed was an effective

way to name elements in this network. The key to the URL

(Universal Resource Locator) is that it is a pragmatic name

that is not only where a resource is but how to access it.

The "http" in the URL could also be "ftp", for example, for

File Transfer Protocol. Thus we absorb the old protocols

into the new without giving up any of the old capabilities.

A graphical browser (Mosaic) for the widely available

consumer platforms made the power available beyond the

scientific community that the Web was originally created

for.

Once again we have a positive feedback cycle with the

Web growing in scope because of the Web. Not only do

we have the tight loop with the Web being the means of

improving the Web – each iteration brings in more partici-

pants and their contributions. The result is a very rapid

growth, or a hypergrowth.

The Internet protocols were themselves built upon simple

standards with the main tools being a terminal program

(Telnet) and the text editor. The Web came about during a

period when the Internet seemed to be getting saturated

and was suffering from slowdowns and other results of

overextension.

Yet the Internet is now much larger with many times more

users. Of course, there are the standard predictions of col-

lapse. The difference is that the Web has transformed the

Internet from a tool for the cognoscenti to one of the fun-

damental engines of society.

http://frankston.com/public

Beyond Limits/Bob Frankston 5 March 1st, 1997

It won't fail because we can't let it fail. Our ability to learn

to be resilient in the face of failures will allow us to avoid

the collapse that is characteristic of rigid systems.

In the earlier example, we saw that there was a tradeoff

between bandwidth and communications speed. With the

Internet we have another communications tradeoff in the

ability to use a very jittery and not fully reliable medium

(the Internet) as an alternative to the well-engineered,

isochronous PSTN or Public Switched Telephone Network.

The impact will be profound because we're selling teleph-

ony components linked together with software rather than

a single "dialtone" service. The threat to the phone net-

work is not just in the dramatically better economics of the

Internet, it is also in the ability to define new telephony

services purely in software.

Generations
We have a tendency to group together a set of changes into

arbitrary "generations". There is a reality to this in that

small changes aggregate to larger trends. Operating sys-

tems for mainframes serve to dole out scarce resources.

Minis, being less expensive, were tuned for particular pur-

poses. Personal computers started out as an extreme sim-

plification of earlier computers for a very low price with

limited utility.

Generational change serves a necessary function of clear-

ing the underbrush of complex ideas so that new ideas can

flourish. The radical simplification of computers in PC's

has allowed the growth of new operating systems with

great emphasis on the ad-hoc integration of applications.

The term "application" itself represents a shift from em-

phasis on the isolated program to its role in service of a

task.

Though the various hypergrowth phenomena seem to

come just in time out of nowhere, if we look closely we

can see their antecedents. VisiCalc had screen editors and

calculators, the Web had the WAIS, FTP, Telnet and Go-

pher, simpler access tools. CISC hardware had the RISC

experience to draw upon. The hardware, software and, es-

pecially, networking growth are building upon themselves.

For the last twenty five years the Internet has been grow-

ing in importance until it was unleashed by the Web. The

interactions between applications over the Internet are an

extended form of the cooperation among applications

within the personal computer itself. This is setting the

stage for the next change in the nature of computing.

Becoming the infrastructure
We are in the midst of a fundamental change in the nature

of and the role of computing. We are creating a global

communications medium that supports digital connectivity

among the computing agents throughout the world. We are

also deploying bits of intelligence throughout the infra-

structure.

The growth of the Internet (often confused with the Web

which is just a set of capabilities riding the Internet) is

dramatic in its own right. What is less obvious is the

growth of intelligent elements such as light bulbs that im-

plement their own lighting policies; or cars that use a local

area network to coordinate their components and the glob-

al network to report diagnostic information and get traffic

updates.

The traditional approaches to system design posit that

there is a system being designed. We are adding to a com-

plex system without any overall coordination. Once again

we've introduced major sources of complexity without the

corresponding means of dealing with it. We need to learn

how.

In a sense, the overwhelming scope of the problem con-

tains the seeds of how to approach a solution. Techniques

that seemed sensible in a well-understood system just don't

work. There is no single version of software to be updated.

But, alas, cleverness allows us to keep up the illusion that

we are still operating in the old world of self-contained

systems. Remote Procedure Calls allow us to pretend that

we are invoking a local subroutine when we might be us-

ing arbitrary resources on the network.

The deception fails when there is something goes awry,

even something as simple as a delay. The result appears as

just one more case of computer unreliability rather than as

a symptom of a fundamentally flawed the approach em-

bodied in the programming tools.

The file system interface for a disk drive doesn't have the

semantics for reporting that the network cable fell out. And

the network itself fails to detect this since it is a mechani-

cal problem and not a "network" problem.

The problems of naive extensions of existing solutions

should sort itself out as we develop alternative approaches

which focus on the interactions between systems New

methodologies will have to be resilient enough to survive

in a constantly changing, inconsistent environment by

bending rather than failing.

Interactions
What happens between or among applications can be more

important than what happens within them.

A system consisting of a million well organized parts is

not complex in the sense that a system of a hundred auton-

omous systems is. The real measure of complexity is not

the number of elements but the number of (nonuniform)

interactions. The way of dealing with this complexity is to

http://frankston.com/public

Beyond Limits/Bob Frankston 6 March 1st, 1997

reduce the interactions. In psychology this is called

"chunking" and humans seem to be able to process less

than ten such chunks at once. This represents an extreme,

but effective simplification of the world. In programming

this can be a matter of finding a representation that allows

us to factor the problem into subproblems with limited in-

teractions.

Techniques such as structured programming, modular pro-

gramming and object oriented programming (to observe

the evolution of the concepts) have been attempts to pro-

vide the programmer with structuring mechanisms. But

they have mostly focused on interactions within a set of

programs. By finding the proper structuring of a program

we can decompose it into elements and then manage the

interaction among the elements. Solving a problem by

finding an effective representation is a recurring theme.

The challenge is not simply to create programs in isolation

but to create independent systems that interact. The inter-

actions are not preplanned. Furthermore, failures must be

bounded and their propagation must be limited. In the

world of the Internet, all systems are potentially intercon-

nected. Ideally local failures do not lead to failures of the

entire system. Within a single computer, we can be very

ambitious in designing interactions among systems and

must sometimes completely reset the entire system to clear

out the knots that form among these interactions. This is

not an option for the systems that form the global infra-

structure.

What makes the problem of managing the interactions

even more difficult is that the systems are not necessarily

well-managed – if they are managed at all. Increasingly

"programs" are being provided by people who do not even

view themselves as "programmers" and the linkages are

not well understood. Mix in a little Internet and we have a

powerful brew.

Scalability
In order to scale systems it is necessary to be able to re-

generate reliability. Normally when you multiply probabil-

ities of success, the result is to decrease the reliability at

each stage. We've been able to defeat this phenomena by

having a way to "understand" the constraints of a system

and use this understanding to regenerate the likelihood of

success. Active elements operating independently without

sufficient defense against failure of other modules and

without a description of how they should work together

lack this regenerative property.

We've pushed the limits of hardware by determining how

to make locally reliable devices. Initially, for example, we

could use a modem to send data across the country as 10

characters a second simply by shifting between two fre-

quencies for the 1's and 0's.But now we send 28.8Kbps (or

more!) across channels designed for 3Khz voice we are

using complex algorithms to make up for the unreliability

of the channel. We hide this complexity within the modem.

Problems that are not amenable to a localized attack are

much more difficult to solve.

An important change is to shift from algorithmic pro-

gramming (traditional) to descriptive programming. The

description limits the "program" to the common under-

standing between the describer (or user) and the computer.

Describing the interactions between elements allows an

observer (the computer) to assist in maintaining the integ-

rity of these interactions and in regenerating reliability.

The description is only in terms of the common under-

standing and, like the railroad, can only go where track is

already laid. We are thus limited by the speed at which we

can lay tracks or define the language. It is the nature of the

frontier for the attention to be focused at the leading edge.

In a sense, the trailing standards setting is a form of track

laying. As with railroad tracks the descriptions limited to

the route or language chosen.

The standards process itself must adjust to the pace of

change and be more adaptable. In fact, standards setting is

a competitive effort to deliver solutions. The ability of the

fleet-footed IETF (Internet Engineering Task Force) to

deliver sufficient, even if over simple solutions, has given

it an advantage over the slower moving organizations

which either standardize the past or create inflexible stand-

ards for the unknown.

The IETF also has a further advantage of codifying prac-

tice rather than prescribing practice. X.400 embodied

many assumptions about how email should work whereas

the primitive protocols of the Internet, SMTP (Simple Mail

Transport Protocol) coupled with domain naming, worked.

Some of the limitations were later address with MIME en-

coding. This might be kludge layered upon kludge but it

got the job done.

There is now fear that the IETF itself has become too lad-

en with its own history.

Social Systems
Cooperating independent systems are, in effect, social sys-

tems. The participants try to interact by following rules

that benefit them all. Norms are ideally derived by consen-

sus after experience. Ultimately, each individual must take

some of the responsibility for its own behavior and fate.

The Web is a good example. It spans continents and trav-

els through (near) space. And it normally works!

The reason that it works is the unreliability of the world-

wide Internet. Each element of the web is constructed on

http://frankston.com/public

Beyond Limits/Bob Frankston 7 March 1st, 1997

the assumption that it will encounter errors and surprises

over which it has no control. The Web, despite its spectac-

ular growth and the vast number of services built on top of

its protocols is simple and shallow. Simple in the sense

that its architecture is understandable (so far) and shallow

in that it isn't built upon layer upon layer but only using a

simple transport protocol over a fairly robust connection

protocol (HTTP on top of TCP/IP with HTML as a simple

markup language).

There is a normal progression from the simple and viable

to the complex and fragile that endangers the very robust-

ness of the web. But it's core functionality will sustain it.

The Web has also invigorated the Internet as a medium.

The increased market size of the Internet due to the Web

has spawned efforts such as Internet telephony. The Web

is built upon the Internet, but the Internet is not limited to

Web protocols.

This meandering path of change and innovation leaves us

without a simple rule when we want to go in a specific

direction and are not willing to wait passively for accidents

to deliver solutions.

The basic principle of building a system out of cooperating

elements applies. The key is to preserve robustness by hav-

ing each element not just preserve reliability but regenerate

it. Ideally it should be possible to recompose capabilities

among their elements and subelements. This is difficult in

arms-length relationships, though even there, negotiation

should be part of the normal interaction, at least at the de-

sign level.

But what is most important is the attitude from which the

problem is approached. Change and surprise are the nor-

mal state. To expect one design to continue to work is na-

ive and dangerous. The term "bit rot" describes the process

by which a seemingly stable set of bits or programs degen-

erates over time. The bits don't change but their relation-

ship with their environment changes because of normal

drift.

The nature of the problems we are trying to solve has

changed and so have the tools. Rather than writing pro-

grams, people are specifying rules or policies or local be-

havior as part of their normal interactions with the world.

Yet we don't understand how to compose these into coher-

ent and explicable systems. We have had to learn the

pragmatic debugging when theoretical debugging was

proven impossible. Now we need to learn the heuristics

that apply to compositing systems. To the extent that a sys-

tem of these local rules can be observed and "understood",

we can assist the user in understanding the behavior of the

system.

This understanding needn't be full, just sufficient for to

manage the interactions. In fact, we should expect that our

understanding is incomplete and wrong so we can adapt to

surprises.

In general, a descriptive approach to specifying behavior is

much better than an algorithmic one since it allows for an

overseer to "understand" what is being requested whereas

a procedural description must be evaluated step by step

without an overview. One is able to be descriptive precise-

ly because the procedural elements are so well understood

that they are incorporated into the larger system and we are

simply calling upon these known elements of behavior. So

we are back again to this cycle of building upon our previ-

ous understanding. The rate at which this process can

propagate and iterate limits the rate of progress.

Towards Resiliency
The old goal was bug-free. The new goal is resiliency. It is

much more important to recover from exceptions than to

avoid them. The term "bug" is useful in describing a be-

havior in the purview of a single designer or design team.

Failure to respond to the external failure or even simply

the surprising behavior of another element is really differ-

ent than a bug within one's own program.

This requires a shift in our thinking: from techniques for

building programs to the integration of independent and

partially defined elements. The programs are still there but

so are other forms of specification such as policies and

constraints. This is an environment in which surprises

(AKA exceptions or failures) will be the norm. Since this

is the infrastructure, there is no option for a complete "re-

boot", though local resets are allowed.

This resiliency applies as well to the "programs" by people

providing specifications for behavior.

We are learning how to build resilient systems. The model

of social systems provides some clues. At each scale there

are organizations which define the limits the interactions

with other organizations. These organizations also have

mechanisms for regenerating local reliability. This is one

of the tenets of the American federal government.

Conclusion
The world is full of limits imposed by physics and by the

complexities of interacting chaotic systems. With clever-

ness and with the computer as tool for effecting computa-

tion we've pushed against these limits with great success.

We'll continue to create faster and better systems.

The challenge now is to shift our thinking from improving

systems in isolation to how create an infrastructure of in-

teracting intelligent elements. We need to move from the

goal of precise, bug-free but isolated, systems to resilient

cooperating systems. Naively extending the rigid models

http://frankston.com/public

Beyond Limits/Bob Frankston 8 March 1st, 1997

of computing will fail. But we can apply the lessons from

earlier models of computing as long as we think them for

this new arena. The solutions will be as much discovery as

design. And we need to realize that it has always been so.

The rapid changes we've seen in computing systems have

been due to our ability to quickly create tools that extend

our capabilities. We've now gotten to the point where these

changes are no longer confined to isolated systems.

The growth we've seen in the capabilities of computer sys-

tems is indeed remarkable but it can also be seen as the

expected continuation of the hyper growth that occurs

whenever there is a strong positive feedback cycle.

This feedback cycle is fed by the computer's ability to

serve as a tool in its own advancement. It is also a means

to leverage innovation from a large number of people.

Classic hypergrowth phenomena run out of resources or

simply reach an unsupportable scale. We've avoided these

limitations so far because the systems are becoming in-

creasingly-resource efficient. We've been able to scale the

systems because we've been able to regenerate reliability at

each level.

This isn't always the case. We've been very unsuccessful in

mastering the complexities of interactive systems and

these complexities continue to increase as we interconnect

systems and add intelligent elements throughout the sys-

tems.

We are not limited in what we can do with the systems.

Innovation will continue to surprise us, the Web and Inter-

net Telephony being but two of the most recent examples.

The Malthusians are very aware of the problems and chal-

lenges they confront. It is not reasonable to simply accept

the premise that things will get better. There is no certainty

and the advancements may be disconcerting to those look-

ing for answers in terms of the current circumstances.

But it is the very uncertainty and chaos which allows new

ideas to vie for superiority. This can be disconcerting for

those who are looking for obvious solutions. But it is an

exciting environment for innovation.

System design in the connected chaotic world requires re-

siliency. And we must regenerate reliability by discovering

new simplicities.

You can't always get what you want,

But if you try sometimes you just might find

You just might find

You'll get what you need

The Rolling Stones, 1969

http://frankston.com/public

