
HTML5/Bob Frankston 1 3/31/2014 15:54

HTML5

If you can you should read the IEEE Version of this arti-

cle where it is better formatted and also provides the IEEE

with feedback about readership.

Note that my previous article is “Life (yet to be) Scripted”.

I’ve been having fun building a home control application

in HTML5. You can see a part of the image of a floor in

my house with light bulb icons showing the lights and oth-

er devices that I can control.

Understanding the past and future of HTML5 gives us an

understanding of the world of bits where one implements

first and then discovers standards as experience coalesces

into common practices. I was able to produce this applica-

tion in a few days – most of the time was spent learning

about new facilities such as WebSockets and implement-

ing connection to my existing home control application.

This is an application which can run in just about any

modern browser from anywhere in the world. I can share it

just by providing a URL. It’s not a web page as much as an

application that uses the browser as a powerful virtual ma-

chine that can run on a wide range of devices from those

that fit in my pocket to large desktop computers.

History doesn’t repeat itself as much as it has harmonics

and echoes. The early personal computers gave us the

freedom to explore new opportunities without the need to

justify our experimentations to computer systems manag-

ers. Nor did we have to worry about a meter running.

HTML5 is very much a work-in-progress and that’s part of

its appeal as the environment continues to evolve. The ide-

as in HTML5 evolved over the years as browsers compet-

ing. Various libraries such as AJAX and JQuery were writ-

ten to give programmers the ability to take advantage of

the new features despite the differences in the capabilities

of each browser.

Browsers: The First Half Century
My first column (Refactoring CE, IEEE Consumer Elec-

tronics Magazine, January 2013) described the accidental

history of the Internet. In implementing the early packet

radio networks we discovered that we could solve commu-

nications problems without relying on carriers to preserve

the meaning of our messages.

HTML5 arises from what I call presentation-centric com-

puting. It’s very different from the days when computers

would read punched cards and then print out the results of

their calcula-

tions.

We can go

back to the

early 1960’s

to DEC’s

first com-

puter, the

PDP-1 and

MIT’s pio-

neering

timesharing

system

CTSS.

Timesharing

was the

cloud com-

puting of the

day – a shared resource. JUSTIFYi, DITTOii and RUNOFF

were some of the programs that would allow you to write a

memo (or a book) and insert markers for pages and para-

http://frankston.com/public
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06776511
http://rmf.vc/IEEENotScripted
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06776511

HTML5/Bob Frankston 2 3/31/2014 15:54

graphs and then have the document formatted to look good

when printed. The ability to then edit the original file and

print out a new copy was revolutionary in the days when

any change would require retyping entire pages if not an

entire document!

There is a direct path from those early programs to HTML.

HTML built upon the ideas in the SGML format used for

professional publishing to create a format for sharable

documents. HTML files were standard files that could be

accessed using any protocol but the preferred protocol is

HTTP which looks very much like an email header. The

use of standard text files allowed people to implement and

experiment without having to build special tools. Anyone

could read an HTML file or an HTTP message and that

readability engendered a degree of trust.

This open format along with browsers that ignored unrec-

ognized tags allow for experimentation with new tags such

as <table>. The addition of JavaScript and the ability to

embed new objects enabled further evolution. The initial

JavaScript took about 10 days and has been evolving ever

since.

The asynchronous loading of elements created an oppor-

tunity for the browser to expand its role from being a pro-

gram that merely presented remote data to one that could

have local smarts and fetch remote data as needed. I re-

member experimenting with those new capabilities in the

1990’s.

Steve Ward took this effort a step further with his CURL

language in 1998. But the market has taken a slower route

to local programming in HTML5.

The constraints of HTML and the browsers contributed to

success of the web. First is the concern about making it

safe to use browser-based applications. This means the

environment isn’t suitable for all applications but limiting

oneself to working within the browser removes a major

barrier to the adoption of the application.

The asynchronous programming environment encourages

a very responsive programming style while avoiding many

of the complexities of using threads in native applications.

Here too there is a benefit in choosing to limit oneself to

the browser environment.

Programs can take advantage of the rendering heritage by

manipulating objects and classes rather than having to do

their own drawing. For example one makes an object (or a

whole class of objects) appear or disappear by just setting

the “visibility” property with a single line of code. The

browser quickly updates presentation to reflect that change.

The loose programming environment encourages experi-

mentation and users can tolerate most failures. Of course a

heavy duty commercial site has high standards but, for the

most part, users can handle issues, especially if they are

fixed by something as simple as a redisplay.

The JavaScript language is also continuing to evolve.

TypeScript (which I am using) and CoffeeScript represent

the future direction of JavaScript and features from these

preprocessors will become part of the standards over time.

Of course an interpretative environment like JavaScript

has to be slow. Or does it? It’s amazing what one could

accomplish when there is the incentive to improve. JavaS-

cript performance has improved rapidly using such tech-

niques as recognizing patterns at runtime!

HTML5 Today
The process of implement first and standardize later has

worked very well. Today’s HTML5 is a plateau in a con-

tinuing evolution. Features that were formerly available in

libraries are now natively available in current browsers.

The development environments have also improved both

within the browsers and externally.

Today’s browser is a rich programming environment with

strong text, video and audio presentation capabilities as

well as vector and pixel-based graphics. The application

can also use local storage on the platforms so it can func-

tion as a standalone application. WebSockets offers power-

ful communications capabilities. WebRTC brings voice

communications capabilities to HTML5 -- basically mak-

ing a telephone just another software component.

PhoneGap is one of the wrappers which can be used to

make an HTML5 application run as a native application

across a number of platforms. Adobe has a service that

will take your application and adapt it to each platform for

free (at least for modest use)!

RESTful servers complement the browser by building on

the HTTP stateless relationships. This makes it easy for the

browser application to access both local and remote ser-

vices. You can think of a RESTful interface as a web form

used by a program.

I can’t begin to explain the full richness of today’s

HTML5 environment – all I can do is whet your appetite

and encourage experimentation.

The Future?
It’s not easy to separate the future from the present as

much of the future is here now in the form of ongoing ex-

periments and capabilities.

In my home control example I had to create icons to repre-

sent the devices in my house and do the programming nec-

essary so that clicking the icon would control the actual

http://frankston.com/public

HTML5/Bob Frankston 3 3/31/2014 15:54

device and, conversely, reflect any changes in the state of

the actual device in the icon.

This capability is already available in the form of widgets

that can be embedded on web pages but the standards are

not quite there. In fact the idea of micro-formats in the

form of XML objects is an old one but such standards have

had difficulty gaining traction on their own. But as stand-

ards and common framework develops they will come into

their own.

As a strong reminder that this isn’t just

about the Internet as such, we can trans-

fer this information via NFC or QR

Codes or any other means. A URL is

simply one way to provide a reference.

It uses the DNS as its dictionary.

Just as personal computers pulled back control from the

centralized computing cloud of the 1970’s, the local com-

puting capabilities of the HTML5 environment offers the

possibility of increased local control of computing. The so-

called cloud or shared capabilities will remain important

but the relationship has changed. Rather than just browsing

the cloud, a browser is now a peer that uses the cloud as a

resource. Don’t let the legacy use of “browser” confuse

you.

In thinking about the future it’s useful to look at the acci-

dental path that took us to HTML5. I’m surprised at how

complex the HTML platform is. I had advocated far sim-

pler platforms. Perhaps it’s similar to the tension between

simpler processor architectures (RISC) and more complex

ones (CISC). It’s very expensive to create complex sys-

tems but when investment is concentrated on a common

goal we can build very rich platforms. HTML5 has lots of

special case quirks because it’s more an agglomeration of

experiments than a single engineered whole. But as a by-

product we also have a very powerful general purpose

platform that can be used for any purpose.

The reason I use the term “refactoring” is that complexity

is not intrinsic. We can ignore that complexity of imple-

menting the platform itself and instead take advantage of

the (relative) simplicity of using the platform to create ap-

plications which take advantage of the new opportunities.

What happens to the telecommunications industry when

WebRTC makes telephony just another application? What

happens to the television business when a “smart TV” is

just another generic device with a screen and an HTML5

engine? Stay tuned to find out …

i http://www.dpbsmith.com/tj2.html
ii http://manpages.bsd.lv/history/CC-205.pdf

http://frankston.com/public
http://www.dpbsmith.com/tj2.html
http://manpages.bsd.lv/history/CC-205.pdf

