
Operating System: A Relic of the Past/Bob Frankston 1 8/20/2017 12:51

Operating System: A Relic of the Past

Operating systems: A relic of the past

© 1995 Bob Frankston

Introduction 2017
I came across this paper which I presented in 1996 at

a workshop on operating systems (SIGOPS?)

Today I’m more critical of Multics and am thinking

more about distributed systems but that’s another

paper …

The original date was March 20, 1996.

Overview
The idea of operating systems have been around

since the mid 60’s. It is time to reexamine the basic

rationale for such systems as we prepare the next

generation of systems and as computers become the

basic components of our infrastructure.

The direction of computer science/software engi-

neering was set in the 1960’s when the primary con-

cerns were making effective use of expensive com-

puters and managing what were then large efforts.

Though the world has changed greatly since then,

we are still pursuing the same basic directions. A

general purpose computer comes as a set of hard-

ware matched to an operating system that manages

resources. Software Engineering methodologies are

focused on assuring that one can specify and follow

through on large projects.

But the computers are getting smaller and cheaper.

PC’s are only a middle stage in this evolution. Indi-

vidual systems are becoming simpler but their inter-

actions are becoming more important and more

complex.

Origins
The computer operating system was a major accom-

plishment of the 1960’s. The 1960’s was the age of

discovery in computers. Compilers (automatic pro-

gramming), databases (network and then relational)

were all important.

With the perspective of time we can rethink our as-

sumptions and the results. The operating system has

persisted as a central theme because it seems that

there should be a conductor for every orchestra. But

we’ve mistaken a powerful, though pragmatic, solu-

tion for a fundamental principle.

This is not merely an historical exercise to see why

one particular set of ideas won. With computers we

have an unusual degree of freedom to not only rethink

the past but rework the present.

Perhaps its my own bias, but I still view Multics as the

high point of operating system design. Of course, this

is an idealized Multics, one that doesn’t have many of

the hacks and kludges of the real implementation. The

mystery was why it’s principles are still central.

The reason, aside from Honeywell’s foibles, is that

sufficiency has been more important than perfection.

In fact, there is no perfection, just tradeoffs. The oper-

ating system itself is one such tradeoff.

Operating Systems
Not all systems have operating systems. Embedded

systems are often written to standard libraries or direct

to the “iron”.

The operating system evolved from such libraries into

a resource manager at the heart of a complex system.

In the days of the IBM 7094, the Fortran Monitor Sys-

tem (FMS) was little more than a set of standard sub-

routines and I/O routines that operated according to a

set of conventions. They supported one job at a time

as part of a stream of jobs conforming to local con-

ventions. Typically unit #5 was the input tape and #6

was the output tape. Eventually, these became magic

numbers no longer associated with tapes.

By the time of Multics, we saw the operating system

as a manager of system resources. The computers

were expensive and it was very important that we pro-

vided for sharing. More to the point, fair sharing, of

the resources among the competing interests. The op-

erating system also contained the file system. Multics

also introduced the notion of the operating system as

the center of system security.

The ring structure of Multics epitomized this model.

The kernel of the operating system, was ring 0. The

concentric rings were intended to introduce degrees of

integrity. Ring 1 evolved to contain all portions of the

system that did not require very high performance di-

http://frankston.com/public

 Operating System: A Relic of the Past

Bob Frankston 28/20/2017 12:51:00

rect access to the hardware. All user programs were

run in ring 4. And then things stalled.

The fundamental model assumed a large system

managed by a trustworthy systems manager with

software provided by the systems supplier. The ring

structure was to support the system database services

and eventually third party systems. But problems

started to appear.

One was the concept of a security kernel which add-

ed incentive to the idea of simplify the operating

system to its basics so that it could be understood.

This was also considered important for reliability.

The file was, once central, was reduced to some

basic disk management functions with the rest of the

system being moved to outer levels. Interestingly,

OS/360 didn’t even have a file system initially, just

some optional cataloging. Multics at the high end

and RSX-11M were systems that separated naming

of files from managing their on-disk structure. Files

had a unique id or a disk block id.

The notion of rings ran into trouble when the simpli-

fying assumption of a central authority gave way to

the need to support mutually suspicious subsystems.

A third party database manager could not be trusted

unfettered access to all of the user’s environment.

Security has stayed important but a poor step-child

of operating systems since it was simply not im-

portant within small groups. Fundamentally complex,

heavyweight, secure operating systems were artifacts

of expensive mainframes domiciled in computer

rooms.

Minicomputers were not the first small systems. We

had process control computers and other specialty

systems. But RSX, Unix and other operating systems

represented the generation of minis that succeeded

the mainframes as shared computer systems. Though

much much cheaper than mainframes, it was still

important to share the systems. The operating sys-

tems for these machines were similar to the ones on

the mainframes. A big difference was that there was

a priority on pragmatism than perfection.

Unix is central to this generation though it didn’t

reach full maturation until the 1980’s and is continu-

ing to evolve to the 90’s.

Enter the PC
PC’s evolved from chipsets with little software. While

the CP/M machines were imitative of the earlier mini-

computers, the game computers like the Ap-

ple][lacked such amenities. They either ran basic on

the iron or had small monitors to assist in writing sim-

ple applications. For those of us who wanted to deliv-

er capability, this was fortuitous. Though well versed

in operating systems, we also had experience with

earlier, smaller systems and specialty hardware. If we

could write operating systems, we could write applica-

tions that did the same things themselves.

 Much more important was the realization that the us-

er’s didn’t care what was going on inside the system,

what mattered was whether they could make the ma-

chine do what they needed it to do. If the operating

system were convenient then we’d use it, if not, then

we would ignore it and, if necessary, work around it.

Since the Apple][and its ilk were sufficiently popular

we could afford to write to the standard iron. We

wrote directly to the screen. We wrote directly to the

disk controller. Actually, calling it a disk controller

was giving it credit, it we had to do nearly all the en-

coding and processing ourselves.

As the PC evolved, we got more and more services

provided. But those of us who kept to the notion that

the user experience was paramount would pick and

choose which of these services we would use and

which we would work around.

The Abort, Retry, Ignore message separated the pros

from the amateurs. The pros took responsibility for

handling all eventualities and the amateurs just used

the standard C-language I/O packages which placed

the burden of handling contingencies on the users.

The Macintosh graphics system was not an operating

system. Rather, it was a graphics toolkit coupled with

libraries to simplify conforming to the systems con-

ventions. The early Macs didn’t even have a file sys-

tem – just utilities for dealing with the disk. The Mac

was a distillation of experience with both the Ap-

ple][and the Xerox Alto..

Microsoft Windows was also originally conceived as a

graphics library with some capability for running ap-

plications as a successor to the DOS command pro-

cessor or shell. But it struggled for acceptance because

 Operating System: A Relic of the Past

Bob Frankston 38/20/2017 12:51:00

the applications were king and the overhead was

simply too much for the needs of the application. It

wasn’t until the 1990’s when memory prices were

low enough and the systems were fast enough that it

found acceptance. But Windows 2 was little more

than the Excel system. One would only run Win-

dows for a limited number of applications.

It was only with Windows 3.1 that the system ran

DOS applications sufficiently well and provided a

modicum of concurrency that it caught it on. It was

only then that the power of a common interface and

integrating environment was able to assert itself.

Only when it enhanced the applications did people

use Windows.

Windows/NT is, in many ways, a great operating

system, but it is struggling against Win95 because

the latter makes the pragmatic tradeoffs in favor of

supporting applications. 95’s tradeoff of usability

against integrity is a powerful advantage.

But both are facing a battle for survival as we con-

tinue to evolve our systems. The PC has grown far

larger and more complex than any mainframe from

the 70’s and has lost its raison d’être.

We already see this happening within the PC as in-

teractions between components dominates the basic

systems services. We cling to the notion that the op-

erating system is at the center as all the activity goes

on around it and between systems. Yet we are still

building systems as if these are just minor exten-

sions to the current structure.

We have lost sight of the fundamental idea that the

operating system is merely a set of conventions that

we abstract from common practices and there is

nothing fundamental. This is acceptable as long as

there is enough slack in the system to allow for it

and as long as the complexity doesn’t overwhelm the

architecture.

Exit the PC
The PC is facing two fundamental threats and a myr-

iad of smaller ones. The two top issues are com-

plexity and overhead. These are closely related and

are replays of the demise of the minicomputer. It is

also exciting whenever we get a chance to rethink

and restart.

This is occurring as computing itself becomes the

fundamental building block of our infrastructure. Not

computers, but computing or intelligent systems. This

involves creating many interacting systems. But we

have no notion of how to make these complex interac-

tions scale.

The solution is then to do what we know how to do

for now and revel in the present. The key elements

include:

 Iron. Really silicon, but the metaphor of going

directly to the underlying layer is important. We

can build chips for specific applications at the cost

of $1 when the memory alone to support an oper-

ating system can be 100 times as much.

 Digital Connectivity. We are no longer just deal-

ing with systems in isolation. More important

these systems do not have any central administra-

tion nor common benevolence.

 Imperfection. This is a vague notion but im-

portant. We can’t assume that we are building up-

on well functioning layers. We can’t even assume

layers. Instead each element must take responsi-

bility at each level to assure it is delivering what it

promises. Conversely, we have learned it is im-

portant to allow the consumer to choose a lower

quality of service than assuring perfection in eve-

ry element since doing so is expensive and ulti-

mately futile.

The most important lesson to learn is that we can and

should be able to discard the comfort and overhead of

the operating system and reinvent the services we

need. We need to reexamine some of the basic gospel

of computer science:

 Reusability. It is better to build out of existing

pieces than to create new ones every time. But this

notion easily goes awry when the effort involved

in assuring reuse overwhelms the cost of rebuild-

ing. Consumer electronics provides great lessons

in the advantage of just replacing entire systems

than reusing pieces.

 Layering. Breaking problems down into simpler

elements is a powerful technique for building sys-

tems. After sufficient experience we develop a set

of conventions that allow arms length coopera-

tion.. Out of this arose the notion of the operating

system API. What is lost is the notion that these

 Operating System: A Relic of the Past

Bob Frankston 48/20/2017 12:51:00

API’s must be renegotiated as the circumstances

change. A network is not simply a remote disk

drive.

Networks represent very different semantics from a

local disk reference. Not only are there addition-

al failure modes that should be handled, notions

of performance and delay don’t even have ana-

logs when dealing with a local disk drive. When

we take this into the wireless domain, the lie is

put to the test and fails miserably. Yet we con-

tinue to model network as simple extensions of

the local system. This only touches upon the

complexities introduced by networking among

mutually suspicious systems.

 Uniformism. The purpose of layers is to try to

provide a uniform basis upon which to build our

applications. But it is often the idiosyncrasies of

each system that make the system what it is.

We also need to question the scope of specific tech-

niques and paradigms. These do represent good

practices but can readily become dogmas.

 Objects. Objects are a good technique for en-

capsulating methods and instances as unit. They

are a nice way of structuring systems. Like other

forms of layering they can serve as an internal

structuring tool and, to a limited extent, as a way

to codifying arms length relationships. Objects

go beyond layering in that they are more inde-

pendent of underlying systems and have rela-

tionships among themselves and isolation be-

tween themselves. This leads to complex inter-

actions.

With objects, we take the dangers of layering – the

lies and misrepresentations – and multiply them

as objects build upon other objects as both layers

and peers. Without oversight, these relationships

drift apart as in a whispering chain. Adding the

notion of distribution, implicit networking, cre-

ates a volatile mix that is likely to explode or

simply fail.

 Minimal Kernels. These are still operating sys-

tems but the foist the blame onto the applica-

tions by declaring all the service subsystems to

be outside the kernel. This isn’t necessarily bad

but neither is it necessary good. It attempts to

preserve the notion of a standard environment

into which one can load applications. An alter-

native is to statically link systems together rather

than relying on the dynamic environment of the

kernel. Key to this is the merging of the embedded

system and the general purpose system. The em-

bedded systems come to the fore as hardware be-

comes a trivial part of the cost of systems. This is

not to say that the notions of operating systems

are obsolete. But it is as knowledge rather than

code that they survive.

 CPU Centricity. Just like a car might be charac-

terized by its horsepower, a computer is character-

ized by its CPU. We need to identify systems of

cooperating components as the entity that is im-

portant. This goes beyond the notion of the net-

work as the system since we are not positing the

form of cooperation and can reduce the network

complexity and scope in these systems.

 Paging. Generally paging is used to give the user

the illusion of having more physical memory than

there really is. Hence the term virtual memory. As

long as there was sufficient memory to keep a

working set in real memory, the illusion could be

maintained. The problem is that as systems be-

come more complex more and more components

are required to maintain the user interface (as well

as support other functions). If these aren’t used

constantly they will get displaced by more active

components. But when one shifts tasks, the sys-

tem goes into a frenzy of paging in order to bring

in the main components, each of which has re-

sponsibility of a small portion of the user interface

that must be repaired at each change.

 Secure systems. Users have physical possession

of much of their devices and much of the infra-

structure. The idea of a security kernel is mean-

ingless. We can have some security in parts of the

infrastructure. Encryption allows some degree of

security for information in insecure systems. As

the infostructure becomes more important integri-

ty and security of data become more important.

But we can’t rely on naïve notions of secure ker-

nels and trusted packages to deliver on these

needs. The mechanisms must be robust and as-

sume both technical and human error as the norm.

 Software design methodology. Obviously the

idea of doing a design is not bad. What is bad is

the assumption that one can design a system as a

whole and then implement it. At the same time as

we take more responsibility for an entire system

 Operating System: A Relic of the Past

Bob Frankston 58/20/2017 12:51:00

including the silicon, we have less control of the

environment in which it runs. We are incremen-

tally adding capability rather than building entire

systems. Of course, we really don’t have any

idea how to do this.

 Messaging and signaling. Sending messages

between systems is a standard way of building

cooperating systems. An alternative is a shared

environment. This sharing is really one of com-

mon representations and ability to reconcile dif-

ferences. These is the basis for more robust co-

operation since it provides a mechanism for re-

pairing damage and limiting drift. It must occur

between cooperating systems at whatever level

they operate. It is not necessarily a uniform ca-

pability though common techniques can be used.

 Trust and reliability. These are at the heart of

how computers have differed from other appli-

ances. We have had the luxury of factors of a

trillion in scale. We are now at the limit of the

complexity of interactions compounded by the

distributed authority that frustrates the ability to

assure proper behavior even if such behavior

was well-defined.

 Common purpose. We don’t really have the

luxury of designing a system as a whole. Not on-

ly are there the software design issues and trust

issues, we are writing application in a real world

of disparate parties, with little in commone. The

ability to add function quickly and incrementally

will win over a full blown design that doesn’t

add sufficient additional value and will win over

a design that requires too much cooperation be-

tween competing parties.

 Error messages. It does little good beyond frus-

trating the user to report that something has gone

wrong. Add the words “fatal” is just an attempt

to heighten the user’s anxiety and bring on a

heart-attack. Once the user is dead, the actual

system failure becomes less important. Rather

than reporting errors, we must report solutions –

what should or can be done to resolve the prob-

lem. This is nontrivial because the explanation

must be tailored to each user and each situation.

A failure of a network server means that the sys-

tem administrator

What to do?
Simplify.

I’ve always been a skeptic of the less is more school.

After all, we had these powerful engines that could do

just about everything. I’ve always enjoyed pushing

operating systems and tools to their limits. But we

must discard these as training wheels and face the

hard problems of building the new infrastructure. We

must be well versed in the old techniques and learn

the new ones.

The irony is that the world is going more and more to

cooperating systems of intelligent devices. But it is

doing so only as fast as we can deliver. And we need

to face up to what we don’t know how to do.

These comments about what we can do are only the

barest starting points. The main point in this particular

essay is that operating systems are not the magic an-

swer. It is important to pursue these ideas in much

more detail but that’s not the purpose of this overview.

• Build simple intelligence devices. The notion of

simple given that we can place the equivalent of

an early PC on a single chip has grown. But just

like PC’s freed us up from the need to assure full

utilization of all the hardware, these new devices

needn’t do more than one or, at best, a handful of

functions. A watch with the power of a PC is giv-

en to three year olds as a reward for buying a

cheeseburger and no one mourns if it’s lost by

bedtime. Instead of reusability build for function.

If one is building a golf watch, make it have a golf

scoring button and color it green and use a differ-

ent watch off the course.

• Build in simple cooperation. We can design some

simple protocols for cooperation and evolve them

over time. This is the secret of the Internet. Per-

haps the golf watch can transmit scores to the PC

but it doesn’t need to be your digital communica-

tor since you’ve got a phone in your pocket any-

way and don’t want the weight on your wrist.

• Assume failure. It is normal for systems to fail.

You should expect that services you call upon are

unreliable. You should depend on what runs local-

ly and be able to survive failures as minor annoy-

ances. Do not do any nontrivial error recovery

since the interactions between failures are major

sources of untestable failures of their own. Better

 Operating System: A Relic of the Past

Bob Frankston 68/20/2017 12:51:00

to isolate the failure than to do complex recov-

ery. At the same time, you shouldn’t hide fail-

ures since then the system still fails but behaves

perversely. The World Wide Web provides one

example, other servers are likely to fail but you

can still use the rest of the infrastructure and can

retry if necessary. This is more problematic as

we build layers of middleware upon the Web.

• Learn by doing. If we are to build large systems

out of simpler systems, the individual compo-

nents should be effective individual. It follows

that sets of them should also be useful. An in-

cremental implementation not only assures early

utility, it allows for learning as one implements.

But this must be done with an expectation of re-

working and revisiting earlier decisions. Loose

coupling between components helps maintain

the system through change as welling as making

it robust against minor failures and mismatches.

Despite these, we are still subject the to com-

plexities of the growing interactions between

systems.

• Learn how to composite systems. We don’t have

an understanding of how to manage the interac-

tions as we composite individual systems. How

do the policies interact? We cannot know the

full consequences of these interactions so how

do we prepare for the contingencies? I think of

this as a policy interaction. One general ap-

proach is to have an overseer for each interac-

tion but how does on do this in practice. This is

a vital area in research, one long past due.

Summary
The operating system has come to characterize the

substrate upon which the applications and services

are to be built? This has been a powerful idea that

has been the underpinnings for much that we have

done.

But each time we reinvent computing we need to

reexamine these notions. And with each generation

the operation system becomes less the core issue.

Minis were dependent upon operating systems for

their generality. PC’s didn’t get full operating sys-

tems until very late in their evolution.

The next generation of computing is moving rapidly

beyond the purview of the operating system. While

the fundamental concepts remain we need to discard

our training wheels and fly. If metaphors must be

mixed, so be it.

Followup
Please send comments and suggestions to me at

Bobf@frankston.com. (in the Web version this will be

a mailto: reference).

