

The Stories of Software/Bob Frankston 1 6/3/2017 13:54

The Stories of Software

Online Edition

You can read this article online.

Preface
Today there is a lot of interest in teaching people to code

as a basic skill. This seems to make a lot of sense in a

world that is increasingly being redefined by software. Yet

I can’t help but think that it’s akin to teaching typing rather

than teaching people how to write or, more importantly,

how to communicate.

The consumer product and services industry (no longer

just consumer electronics) is creating a demand for people

with programming skills who can take an idea and turn it

into executable code.

But the concept of software is much broader and deeper

than simply substituting software for gears and levers. It is

a way of telling stories and creating agents that can take on

a life of their own.

The Internet is a byproduct of this new concept. Rather

than depending on scribes or telecommunications compa-

nies to carry our messages, now we use software to pro-

gram around those once necessary intermediaries.

Mastering the skills and language of programming gives us

the vocabulary for understanding how software is rewrit-

ing the world. And then we can begin the conversation

about what I call the New Literacy.

All that said, it’s fun to build things that take on a life of

their own that are actually useful and which I can share

with others. With software, I don’t need to build an entire

factory to create products (and services) that I can sell to

or simply distribute to the world.

The Age of Programming
The idea of storing a series of instructions in a computer’s

memory just like any other data dates back to the 1940’s

and is often referred to as the Von Neumann architecture.

Stored programs had a major advantage over wired logic

because you could change the behavior of the computer by

loading different instructions. At the time computers were

programmed by wiring them for a given task. Plug boards

represented one approach to wiring for simple card pro-

cessing systems.

Stored programs were more flexible but it was still tedious

to carefully assemble the very detailed instructions neces-

sary for each task.

http://frankston.com/public
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539250
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7539250

The Stories of Software/Bob Frankston 2 6/3/2017 13:54

One of the first breakthrough was automatic

programming in the 1950s. This avoided the

need to employ programmers. Instead mathe-

maticians and scientists could write in their

normal language of formulas:

PI = 3.14156
SIN = SIN(PI)

What could be simpler and more readable?

Stored program computers could do their own

programming! The program was the Formula

Translator or, more familiarly, the Fortran lan-

guage. To today’s programmers Fortran is just

another language and it still has a community

of usersi.

Fortran solved the problem of programming.

Actually it solved one problem with program-

ming. It was just the start of a process of devel-

oping vocabularies that bridge our understand-

ing and the descriptions computing devices can

“understand”. What does it mean to under-

stand? That’s part of the challenge.

By the time I took a class in the history of pro-

gramming languages in 1967 our professor, Saul Rosen,

had published a thick collection of papers on Program-

ming Systems & Languages as people experimented with

many approaches to programming.

We started out with languages specialized for various pur-

poses such as COBOL for business and Lisp for AI. To-

day’s languages are more general purpose but we continue

to develop vocabularies appropriate to classes of applica-

tions.

The Art of Programming
I’ve remained fascinated by programming languages over

the years as we better understood the art of programming. I

say art because deciding how to tell a story is indeed an

art. This is why I chose the name Software Arts for the

company Dan Bricklin and I founded in 1979.

An important part of the art of programming is an articu-

late understanding of technique. One of the big challenges

is understanding how to express concepts in terms the ma-

chine can understand. Even harder, perhaps, is understand-

ing what the code is really doing as the number of interac-

tions increases.

As I write this I’m trying hard to avoid jargon but there are

limits as the very concepts require their own language. We

tend to use anthropomorphic language to describe pro-

grams but doing so runs the risk of inferring too much un-

derstanding on the part of the computer.

Object-oriented program is an important concept but sto-

ries and engineering don’t work if you lose perspective or,

more to the point, perspectives. Objects are useful in or-

ganizing programs but it’s important that we’re working

with representations. A number is a number that we may

interpret as a temperature in Celsius or Fahrenheit depend-

ing on the context.

Ambiguity is essential and fundamental. This is why we

don’t do serious programming by drawing diagrams. In-

stead we use words to represent concepts not just opera-

tions. We might ask a program to print out a date but the

details depend on the context.

Programming can be tedious and error prone and, in the

1970’s we longed for a programmer’s assistant that could

keep track of all the housekeeping tasks. Today’s IDEs

(Integrated Development Environments) are a realization

of that dream.

The growth of languages such as Python and JavaScript

with a more relaxed view of objects has demonstrated the

value of flexibility. Personally I like the approach taken by

languages such as TypeScript which adds type annotation

to JavaScript. This allows my assistant, the IDE, to help

me. This works well with my personal style of kneading

code or, to use more common term, refactoring code, by

helping warn me about conflicts as I evolve the code.

Programs aren’t just for web pages. They also do creative

tasks on our devices (AKA smartphones) to turn them into

sensors, cameras or whatever.

We need to do more than continue to improve on the idea

of automatic programming. Software is more about ideas

than putting together programs.

Programming and Programmers
Today there is a burgeoning demand for programmers who

can take business rules and represent them in code. Pro-

grammers are also needed to handcraft websites.

It is a very labor-intensive practice and recalls the early

days of automatic programming. We still face the chal-

lenge of translating the concepts into working code.

A lot has changed. Programs have to continue to evolve

over time. It’s not so much that they are written as that

they are constantly being rewritten and evolve as the re-

quirements evolve.

http://frankston.com/public

The Stories of Software/Bob Frankston 3 6/3/2017 13:54

As with any new technology we start out by substituting

programs for older technologies. Today much of program-

ming is the new form of manual labor building web sites

or making things smarter. The focus is on creating prod-

ucts and the use cases.

To get more of the benefit of software we need to provide

interfaces (APIs or Application Program Interfacesii) that

enable users to create their own solutions.

This shifts where value created. We can see this with the

Internet which changes the business of networking from

providing solutions (voice and reliable deliver) to enable

technologies (best efforts packet transport). We’re still

navigating the transition.

Symbiosis and Empowerment
In the 1950’s John McCarthy proposediii the idea of multi-

ple people sharing a single computer – time sharing. He

recognized that there was a key difference between writing

a program and submitting to run and actively interacting

with the computers.

The idea of a man/machine symbiosis continued to evolve

at MIT’s Project MAC which co-founded by an acoustic

psychologist, JCR Licklider. Lick played a key role in

ARPA’s funding of computer science research which gave

us the Arpanet and, eventually, the Internet.

My first job, in 1966, was helping to build an online ser-

vice that would allow analysts to explore financial data.

The system, an SDS-940 was developed at Berkeley and

one of its developers, Butler Lampson consulted for us and

helped develop a tool, FFL or First Financial Language,

intended for use by people who didn’t consider themselves

programmers. Users would specify rows and columns. The

rows might be company names (like GM) and the columns

might be an item like (SLS.Y66). And the value would be

shown at the intersection.

I learn best by doing and in August 1966 I took home a

computer terminal (top of a teletype) and was able to play

with what was, in effect, a personal computer. I’ve been

online ever since. I didn’t have to worry about the cost so I

could use a million-dollar computer as an alternative to a

$100 typewriter. In effect I lived a future in which com-

puter was just a mundane tool and capabilities such as

email were assumed in my community.

In 1978 my friend Dan Bricklin designed a tool for his

own use while in business school. This became VisiCalc,

the first electronic spreadsheet. It gave people the ability

to, in effect, create programs by working on their own so-

lutions while the computer, in effect, took notes. A spread-

sheet formula may look like Fortran but referring a cell as

A1 isn’t so much giving a name as a way of pointing and

saying “that”. As some users get more into the program-

ming side they look beyond the surface can start manipu-

lating the formulas as text.

VisiCalc didn’t know anything (or at least not much) about

finance or any particular application but instead empow-

ered the user by providing language that provided a bridge

between the way they thought about their problems and the

computer’s mindless computational capabilities.

Spreadsheets represent one approach to empowering users,

or, more to the point, people to tap into the power of com-

puting.

Developing (or creating) web pages is another way to tap

into the capabilities of computers. Simple markup is a

form of coding but it isn’t very powerful. Over time the so-

phistication has grown as designers learned to create a dy-

namic experience very different from preparing a static

printed page. As browsers have evolved from simply pre-

senting pages to becoming programming environments

more people are learning to program.

More important perhaps than the mechanics of program-

ming is understanding the concepts. The goal of learning

to program isn’t about getting jobs (though that can be one

result) as much as learning the languages of software. Just

as learning a foreign language helps one understand one’s

own language, learning to program a computer requires an

articulate understanding of what one is trying to say or do.

One of my mentors, Seymour Papert, explained that the

goal of education should be to learn how to learn. A part of

that is debugging our understanding. If you do badly on a

test it doesn’t mean you are stupid. You just need to figure

out what you did not understand. This is in sharp contrast

to the notion that education is about learning arbitrary facts

and rules.

In this context, teaching programming is not so much

about a job skill as giving people a vocabulary for sharing

their understanding with computers and, in the process, a

better way of articulating their understanding so they can

share it with other users.

The Internet and Relationships
This brings us to the Internet that happened when we

learned to program around intermediaries. But what does

that mean? In a prior columniv I wrote about how we dis-

covered that in order to interconnect disparate systems we

had to exchange packets without relying on the network to

assure the meaning was preserved. Instead we had to solve

problems and interpret the packets outside of the network

in our devices.

http://frankston.com/public

The Stories of Software/Bob Frankston 4 6/3/2017 13:54

As programmers our job is to see what we can do with the

capabilities of the transport. If we have high packet loss,

we can still do simple messaging. If we have high capac-

ity, we can have video conversations. This is very different

from the traditional engineering paradigm of building lay-

ers of dependency. As devices become more capable (pro-

grammable) we can shift the perspective from depending

on layers to seeing them as resources we can choose to re-

purpose. This ability to reinvent is part of what has driven

Moore’s law.v

The key here is a shift from thinking about the mechanics

of the task of messaging to focusing on the relationships

between the end points. (http://rmf.vc/IEEERelationships).

This allows those with domain expertise to use their exper-

tise without having to negotiate with a third party merely

to make a connection between two end points.

It also benefits those without domain expertise because

they can choose from a wide variety of experts rather than

being limited to a single expert who controls the path be-

tween the two end points.

Traditional engineering can now be extended to include el-

ements without concern about physical proximity.

Focusing on relationships represents a sharp departure

from traditional electrical engineering and networking

which has a separate cable and protocol for each applica-

tion going back to the days of special phone wires and

video wires and, more recently USB, Bluetooth, HDMI,

DVI and on and on.

Soft
Taking advantage of these new opportunities is a departure

from traditional engineering which builds systems in lay-

ers. Instead we focus on each application and view availa-

ble facilities as resources and opportunities. We solve

problems by creating new abstractions and changing rela-

tionships (or bindings).

Here’s where the focus shifts to the word “soft” in soft-

ware. At a simple level we can rapidly evolve software so-

lutions as opposed to hardware which needs a long design

cycle. It can take years to produce a new chip whereas we

can rework software in minutes.

Even subtler is our ability to solve problems by finding, or

inventing, new representations. This is not entirely new.

The invention of the solar system not only simplified navi-

gation but also gave us the insights that led to Newtonian

physics.

i https://en.wikipedia.org/wiki/Fortran#Fortran_2015
ii http://rmf.vc/IEEEAPIFirst

There is no algorithm for finding the right representation

or architecture because we aren’t solving a single problem.

This is why it’s useful to think about an available facility

as a resource or opportunity without being confined to a

provider’s view of how it’s supposed to be used. A strand

of copper may be used as a networking medium or it can

carry power or we can use it to hang a poster. Or it can be

all of these at once depending on factors entirely outside

the wire itself.

With hardware we build the one function into the device

but with software we can constantly reinvent what some-

thing is and what it does. Even better, we can share the

same physical resource for entirely different purposes as

when we share a single Internet.

This also applies to understanding how systems work. I

don’t like the term complex adaptive systems. That’s back-

wards because the function, and thus the complexity, de-

pends on the point of view. Instead we need to find the

many simple systems or perspectives.

With software we’re not substituting bits for electrons but

instead have a completely different conceptual framework.

Traditional programming gives us some of the tools we

need to start to explore this new landscape of abstractions.

But yet we’re still in the early stage of substituting soft-

ware for mechanical systems. The next stage will seem

like magic as we effect solutions merely by taking a fresh

perspective. OK, not merely but it seems magical in the

same way that when connecting to a website you don’t

think about all that has to go right for you to simply type in

a URL and connect. The secret is that a lot has to go right

but it’s OK for a lot to go wrong as long as you’re not par-

ticular about exactly what goes right.

It may be annoying if Skype isn’t working for a while but

in return for accepting some risk we get the ability to do

video much of the time. And, unlike hardware systems,

software can evolve in place. But it will take time for peo-

ple to accept some risk in return for the ability to create,

and share, their own solutions.

Welcome to our new reality. We solve problems by find-

ing ways to tell stories that our computing devices can un-

derstand using a vocabulary appropriate to the task.

http://frankston.com/public
http://rmf.vc/IEEERelationships
https://en.wikipedia.org/wiki/Fortran#Fortran_2015
http://rmf.vc/IEEEAPIFirst

The Stories of Software/Bob Frankston 5 6/3/2017 13:54

iii http://www-formal.stanford.edu/jmc/history/timeshar-

ing/timesharing.html and http://ethw.org/Archives:The_Com-

puter_Pioneers:_Switched_Output:_Time-sharing_at_MIT

iv http://rmf.vc/IEEERefactoringCE
v http://rmf.vc/BeyondLimits

http://frankston.com/public
http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
http://ethw.org/Archives:The_Computer_Pioneers:_Switched_Output:_Time-sharing_at_MIT
http://ethw.org/Archives:The_Computer_Pioneers:_Switched_Output:_Time-sharing_at_MIT
http://rmf.vc/IEEERefactoringCE
http://rmf.vc/BeyondLimits

